Using Demovire's theorem:
Let c = cosx, s = sinx, then
(c+is)^5
= c^5 + 5c^4(is) + 10c^3(is)^2 + 10c^2(is)^3 + 5c(is)^4 + (is)^5
= c^5 + 5ic^4s - 10c^3s^2 - 10ic^2s^3 + 5cs^4 + is^5
= c^5 - 10c^3s^2 + 5cs^4 + i(5c^4s - 10c^2s^3 + s^5)
collecting the terms free of i gives cos(5x) and collecting terms with i, gives sin(5x) ..
cos(5x) = cos5(x) - 10cos3(x)sin2(x) + 5cos(x)sin4x
sin(5x) = 5cos4(x)sin(x) - 10cos2(x)sin3(x) + sin5(x)