Turn on thread page Beta
    • Thread Starter
    Offline

    0
    ReputationRep:
    The question is to find the MGF of X1.X2, where X1 and X2 are i.i.d. random variables following the uniform distribution with parameters a and b, so having MGF:
    \frac{e^{\theta b} - e^{\theta a}}{\theta (b-a)}

    Can you check this working?

    

\hspace*{40mm}\mathbb{E} \left[ e^{\theta X_1.X_2}\right] = \mathbb{E}_{X_2}\left[ \mathbb{E}_{X_1}\left[ e^{\theta X_1.x_2} \right] \right]
    

\hspace*{60mm} = \mathbb{E}_{X_2}\left[ \mathbb{E}_{X_1}\left[ e^{(\theta x_2) X_1} \right] \right]

\newline

\hspace*{60mm} = \mathbb{E}_{X_2}\left[ \frac{e^{\theta b X_2} - e^{\theta a X_2}}{\theta (b-a) X_2} \right]
    

\hspace*{60mm} = \left(\frac{1}{b-a}\right) \int_a^b \frac{e^{\theta b x_2} - e^{\theta a x_2}}{\theta (b-a) x_2} \text{  d}x_2
    

\hspace*{60mm} = \left(\frac{1}{\theta (b-a)^2}\right) \int_a^b \left[ \frac{e^{\theta b x_2}}{x_2} - \frac{e^{\theta a x_2}}{x_2} \right] \text{  d}x_2

    And then I think you can't do the rest because that would involve the exponential integral function (Ei)?
    Does anyone know how to express the answer using that function though?

    Or can you do this (I think line 2 is wrong):


     \mathbb{E} \left[ e^{\theta X_1.X_2}\right] = \mathbb{E}_{X_2}\left[ \mathbb{E}_{X_1}\left[ e^{\theta X_1.x_2} \right] \right]
     \hspace*{20mm} = \mathbb{E}_{X_2}\left[ \left( \mathbb{E}_{X_1}\left[ e^{\theta X_1 \right] }\right)^{x_2} \right]
     \hspace*{20mm} = \mathbb{E}_{X_2}\left[ \left( \frac{e^{\theta b} - e^{\theta a}}{\theta (b-a)} \right)^{X_2} \right]
     \hspace*{20mm} = \left(\frac{1}{b-a}\right) \int_a^b \left( \frac{e^{\theta b} - e^{\theta a}}{\theta (b-a)} \right)^{x_2}\text{ d}x_2
     \hspace*{20mm} = \left(\frac{1}{b-a}\right) \frac{1}{\log\left( \frac{e^{\theta b} - e^{\theta a}}{\theta (b-a)} \right)}\ \left[ \left(\frac{e^{\theta b} - e^{\theta a}}{\theta (b-a)} \right)^{x_2} \right]^b_a  \hspace*{20mm} = \left(\frac{1}{b-a}\right) \frac{1}{\log\left( \frac{e^{\theta b} - e^{\theta a}}{\theta (b-a)} \right)}\ \left[ \left(\frac{e^{\theta b} - e^{\theta a}}{\theta (b-a)} \right)^b - \left(\frac{e^{\theta b} - e^{\theta a}}{\theta (b-a)} \right)^a\right]
 
 
 
Reply
Submit reply
Turn on thread page Beta
Updated: January 1, 2013
Poll
Do you think parents should charge rent?
Useful resources

Make your revision easier

Maths

Maths Forum posting guidelines

Not sure where to post? Read the updated guidelines here

Equations

How to use LaTex

Writing equations the easy way

Student revising

Study habits of A* students

Top tips from students who have already aced their exams

Study Planner

Create your own Study Planner

Never miss a deadline again

Polling station sign

Thinking about a maths degree?

Chat with other maths applicants

Can you help? Study help unanswered threads

Groups associated with this forum:

View associated groups

The Student Room, Get Revising and Marked by Teachers are trading names of The Student Room Group Ltd.

Register Number: 04666380 (England and Wales), VAT No. 806 8067 22 Registered Office: International House, Queens Road, Brighton, BN1 3XE

Write a reply...
Reply
Hide
Reputation gems: You get these gems as you gain rep from other members for making good contributions and giving helpful advice.