How do I divide a number that cannot be divided?Watch

Announcements
#1

thanks
0
5 years ago
#2
Is this a troll? It can't be divided.
0
5 years ago
#3

In what domain are we talking? Real, complex?

All real numbers can be divided...you just might not get a whole number.
0
#4
How do I divide .2% of the calculus theorem?
0
5 years ago
#5
Which theorem of calculus are you talking about?

Spoiler:
Show

I'm aware this is a joke, just thought I'd play along for a bit

Posted from TSR Mobile
0
5 years ago
#6
(Original post by King Leonidas)

thanks
You need to use Symbolic Mathematics.
1
#7
(Original post by majmuh24)
Which theorem of calculus are you talking about?

Spoiler:
Show

I'm aware this is a joke, just thought I'd play along for a bit

Posted from TSR Mobile
I'm being totally serious, my maths is really bad I want to create my own theorem.
0
5 years ago
#8
Define as the set of reals that cannot be divided. Then to divide do as you please king, it will be vacuously true, just don't kick me down a hole.
0
5 years ago
#9
(Original post by ThatPerson)
You need to use Symbolic Mathematics.
Indeed! Which method would you suggest - exponential ladders, squaring the ratio, or the Dalekian algorithm?

(Original post by King Leonidas)
I'm being totally serious, my maths is really bad I want to create my own theorem.

If , and , we can use Kaluza-Klein theory along with the topological 42 dimensional fractal self similarity between

Where denotes the Laplace Transform of as a function of parameter t, which is given by where s is an arbitrary parameter.

Symbolic maths is the way to go
Posted from TSR Mobile
0
5 years ago
#10
(Original post by majmuh24)
Indeed! Which method would you suggest - exponential ladders, squaring the ratio, or the Dalekian algorithm?

Gauss may have been the prince, but Dalek is the god of mathematics, period.
0
5 years ago
#11
(Original post by majmuh24)
Indeed! Which method would you suggest - exponential ladders, squaring the ratio, or the Dalekian algorithm?

If , and , we can use Kaluza-Klein theory along with the topological 42 dimensional fractal self similarity between

Where denotes the Laplace Transform of as a function of parameter t, which is given by where s is an arbitrary parameter.

I've created my own branch of maths too
Posted from TSR Mobile
I see. The scary thing is that this makes as much sense to me as certain real maths.
0
5 years ago
#12
I know a proof, but this page is too narrow to contain it. Soz.
3
X

new posts
Back
to top
Latest
My Feed

Oops, nobody has postedin the last few hours.

Why not re-start the conversation?

see more

See more of what you like onThe Student Room

You can personalise what you see on TSR. Tell us a little about yourself to get started.

University open days

Thu, 24 Oct '19
• Cardiff University
Sat, 26 Oct '19
• Brunel University London
Sat, 26 Oct '19

Poll

Join the discussion

Yes (65)
23.13%
No (216)
76.87%