I will complete the second question first as it helps with the first one:
If p = 1/q then pq = 1
p = (secx - tanx)
q = (secx + tanx)
pq = (secx - tanx)(secx + tanx)
= sec^2(x) + secxtanx - secxtanx - tan^2(x)
= sec^2(x) - tan^2(x)
sec^2(x) = 1 + tan^2(x), substituting this in:
= (1 + tan^2(x)) - tan^2(x)
= 1
Q.E.D. Thus p = 1/q
(secx + tanx) = -3
From above we have:
1/(secx + tanx) = (secx - tanx)
(q = 1/p)
So:
-1/3 = (secx - tanx)