Hey there! Sign in to join this conversationNew here? Join for free
    Offline

    16
    ReputationRep:
    (Original post by Vanilla Cupcake)
    Congrats! I did the 2006 paper and found it to be quite a nice one (I got 90 on it )
    But I'm pretty inconsistent lately so I'm hoping to do a couple more past papers before the exam to try and keep getting high As
    Found out I'm terrible at the algebra manipulation questions so I'll probably be practising some of those in the book and end of chapter tests

    Posted from TSR Mobile
    Thanks yeah 2006 was fairly nice, when I completed it I thought Id get around 94/95 but after marking it I found out I made stupid errors, like for one question I didn't write y=x..., I wrote x... I guess I need to keep doing papers to remove these mistakes
    Offline

    14
    ReputationRep:
    (Original post by sosassysofe)
    For some reason our teacher cant get hold of it...so weird Also, would u say that the 2015 exam was harder than previous years?
    I would not say the maths required to do it was much harder than previous years but instead the questions were slightly more obscure. For example on some integration questions you would have to "intepret this answer geometrically" or find the greatest distance between the curves in a bounded region. It was 68/100 for an A and I managed to get one. yay!


    Posted from TSR Mobile
    Offline

    14
    ReputationRep:
    If no-one can get hold of the 2015 Paper, I will make a similar calculus question based off of my memory of the question and from unofficial mark schemes. But please note it will not be exact. I may also do the weirder trigonometry question as well :P
    • Community Assistant
    Offline

    20
    ReputationRep:
    Community Assistant
    (Original post by Cryptokyo)
    If no-one can get hold of the 2015 Paper ...
    Unfortunately it is against TSR rules to share the latest password protected paper as schools like to use it as a mock.
    Offline

    14
    ReputationRep:
    (Original post by Mr M)
    Unfortunately it is against TSR rules to share the latest password protected paper as schools like to use it as a mock.
    Oh, ok. Sorry. But therefore aren't unofficial mark schemes doing this?
    • Community Assistant
    Offline

    20
    ReputationRep:
    Community Assistant
    (Original post by Cryptokyo)
    Oh, ok. Sorry. But therefore aren't unofficial mark schemes doing this?
    No.
    • TSR Community Team
    Offline

    20
    ReputationRep:
    TSR Community Team
    (Original post by TheOtherSide.)
    6th June 2016 - OCR FSMQ Additional Maths Exam
    I hope that this thread will be helpful for anybody who's taking Additional Maths this year. I've posted up some resources, but feel free to message me about any other resources I could include, as well as using this thread to help each other on different topics in Additional Maths.
    Thanks for making this thread OP! I've added it to the Exam Directory Thread which you can find here. Use that thread to find discussions on your other exam papers, and do let me know if you spot any that aren't on the list. Good luck with this exam!
    Offline

    13
    ReputationRep:
    Question about trig. identities.....

    For questions such as 'solve tan 3x = −1 for values of x in the interval 0◦ ≤ x ≤ 180◦.'
    is there a way to find the values without having to memorise the trig. graph? E.g a set of equations for
    values of x in each type of graph?
    • Thread Starter
    Offline

    19
    ReputationRep:
    (Original post by Tasha_140)
    Question about trig. identities.....

    For questions such as 'solve tan 3x = −1 for values of x in the interval 0◦ ≤ x ≤ 180◦.'
    is there a way to find the values without having to memorise the trig. graph? E.g a set of equations for
    values of x in each type of graph?
    As far as I know, you'll just be expected to use the trig graphs, but that shouldn't be too hard to do anyway, as long as you remember these:
    • The y-intercept of y = sinx is 0 and for y = cosx, it is 1
    • Each period is 360° long for cos and sine graphs, while it is 180° for tan graphs
    • The tan graph crosses the x axis at 0
    • The sine and cos graphs have maximum and minimum points of 1 and -1, while the tan graph doesn't have maximum or minimum points
    Really, as long as you know the general shape of each of the graphs, you should be fine:
    Spoiler:
    Show
    Spoiler:
    Show
    Unless Zacken could suggest something else?
    Offline

    22
    ReputationRep:
    (Original post by Tasha_140)
    ...
    CAST diagrams. Watch this to understand what it is, then watch this to see how it's used and examples.
    Offline

    13
    ReputationRep:
    (Original post by Zacken)
    CAST diagrams. Watch this to understand what it is, then watch this to see how it's used and examples.
    Thankyou, this was really helpful!
    Offline

    13
    ReputationRep:
    (Original post by TheOtherSide.)
    As far as I know, you'll just be expected to use the trig graphs, but that shouldn't be too hard to do anyway, as long as you remember these:
    • The y-intercept of y = sinx is 0 and for y = cosx, it is 1
    • Each period is 360° long for cos and sine graphs, while it is 180° for tan graphs
    • The tan graph crosses the x axis at 0
    • The sine and cos graphs have maximum and minimum points of 1 and -1, while the tan graph doesn't have maximum or minimum points
    Really, as long as you know the general shape of each of the graphs, you should be fine:
    Spoiler:
    Show
    Spoiler:
    Show
    Unless Zacken could suggest something else?
    Thanks for that! Will try and remember those facts
    Offline

    13
    ReputationRep:
    Anyone have any idea how you would solve:

    tan^2θ + 3tanθ - 4 = 0,

    for -180° < θ < 180°

    I figured I need to solve the equation to end up with 'θ=.....' and then I can use a CAST diagram to find other values of theta,
    just unsure how to get up to that stage
    Offline

    22
    ReputationRep:
    (Original post by Tasha_140)
    I figured I need to solve the equation to end up with 'θ=.....' and then I can use a CAST diagram to find other values of theta,
    just unsure how to get up to that stage
    It's a quadratic in \tan \theta. So perhaps make the substitution u = \tan \theta to get u^2 + 3u - 4= 0, solve that and then back-substitute \tan \theta = \text{two solutions from quadratic}. Then CAST takes over.

    This 'disguised' quadratic thing shows up in many guises, be it trigonometrical or exponential, so for example 5^{2x} + 5^x - 10 = 0 \iff (5^x)^2 + 5^x - 10 = 0 \iff u^2 + u - 10 = 0 where u = 5^x is a quadratic in 5^x. You need to get used to spotting these things and I find that making the explicit substitution u = \tan \theta or u = 5^x is really helpful for most students.
    Offline

    13
    ReputationRep:
    (Original post by Zacken)
    It's a quadratic in \tan \theta. So perhaps make the substitution u = \tan \theta to get u^2 + 3u - 4= 0, solve that and then back-substitute \tan \theta = \text{two solutions from quadratic}. Then CAST takes over.

    This 'disguised' quadratic thing shows up in many guises, be it trigonometrical or exponential, so for example 5^{2x} + 5^x - 10 = 0 \iff (5^x)^2 + 5^x - 10 = 0 \iff u^2 + u - 10 = 0 where u = 5^x is a quadratic in 5^x. You need to get used to spotting these things and I find that making the explicit substitution u = \tan \theta or u = 5^x is really helpful for most students.
    Thankyou! That makes a lot more sense!
    Offline

    22
    ReputationRep:
    (Original post by Tasha_140)
    Thankyou! That makes a lot more sense!
    No worries. :-)
    Offline

    13
    ReputationRep:
    Show that the equation '3cos²θ = sinθ + 1' can be written as '3sin²θ + sinθ - 2 = 0'

    How do you solve something like this? I know the rule 'sin²θ + cos²θ = 1', but I can't see how this can be used - unless there is another formula I need or I'm not solving it correctly?
    Offline

    22
    ReputationRep:
    (Original post by Tasha_140)
    Show that the equation '3cos²θ = sinθ + 1' can be written as '3sin²θ + sinθ - 2 = 0'

    How do you solve something like this? I know the rule 'sin²θ + cos²θ = 1', but I can't see how this can be used - unless there is another formula I need or I'm not solving it correctly?
    \cos^2 \theta + \sin^2 \theta = 1.

    Re-arrange this: \cos^2 \theta = 1 - \sin^2 \theta

    So 3\cos^2 \theta = 3(1-\sin^2 \theta) = 3 - 3\sin^2 \theta.

    Hence: 3\cos^2 \theta = \sin \theta +1 \iff 3 - 3\sin^2 \theta = \sin \theta + 1

    Re-arrange this to get it in the required quadratic form and get used to doing \cos^2 \theta = 1-\sin^2 \theta and \sin^2 \theta = 1- \cos^2 \theta because you will be using these identities a lot over your mathematical career.
    Offline

    13
    ReputationRep:
    (Original post by Zacken)
    \cos^2 \theta + \sin^2 \theta = 1.

    Re-arrange this: \cos^2 \theta = 1 - \sin^2 \theta

    So 3\cos^2 \theta = 3(1-\sin^2 \theta) = 3 - 3\sin^2 \theta.

    Hence: 3\cos^2 \theta = \sin \theta +1 \iff 3 - 3\sin^2 \theta = \sin \theta + 1

    Re-arrange this to get it in the required quadratic form and get used to doing \cos^2 \theta = 1-\sin^2 \theta and \sin^2 \theta = 1- \cos^2 \theta because you will be using these identities a lot over your mathematical career.
    Ohh right, got it - thanks again! (:
    Just unsure whether I would think to do this if that makes sense? Seeing your explanation it now seems obvious, yet it never came to my head to attempt to solve it that way
    Offline

    22
    ReputationRep:
    (Original post by Tasha_140)
    Ohh right, got it - thanks again! (:
    Just unsure whether I would think to do this if that makes sense? Seeing your explanation it now seems obvious, yet it never came to my head to attempt to solve it that way
    Well, anytime you want to go from something involving \cos^2 \theta to something involving \sin^2 \theta you'll always need to use that identity. It comes with practice, I suppose. Now that you've seen it, you'll be more aware of it - hopefully.
 
 
 
  • See more of what you like on The Student Room

    You can personalise what you see on TSR. Tell us a little about yourself to get started.

  • Poll
    Have you ever participated in a Secret Santa?
  • See more of what you like on The Student Room

    You can personalise what you see on TSR. Tell us a little about yourself to get started.

  • The Student Room, Get Revising and Marked by Teachers are trading names of The Student Room Group Ltd.

    Register Number: 04666380 (England and Wales), VAT No. 806 8067 22 Registered Office: International House, Queens Road, Brighton, BN1 3XE

    Quick reply
    Reputation gems: You get these gems as you gain rep from other members for making good contributions and giving helpful advice.