Hey there! Sign in to join this conversationNew here? Join for free

Differential Equation - Complimentary function and particular integral Watch

    • Thread Starter
    Offline

    0
    ReputationRep:
    Can anyone help with the below question, just can't get my head around it. Thank you.

    Use the method of complimentary function and particular integral to find theparticular solution of the differential equationy''+5y'+4y=sinx , with y(0)=1 and y' (0)=2
    Online

    19
    ReputationRep:
    (Original post by Jake Brookes)
    Can anyone help with the below question, just can't get my head around it. Thank you.

    Use the method of complimentary function and particular integral to find theparticular solution of the differential equationy''+5y'+4y=sinx , with y(0)=1 and y' (0)=2
    This looks to be a standard question. What have you tried?
    Offline

    12
    ReputationRep:
    As it has been said, it looks quite standard.

    You get the complementary function by first finding the solutions of the auxiliary equation: m^2 + 5m + 4 = 0.

    The particular integral can be found by using y = asinx + bcosx and subbing that into the oringal equation.

    Combining the complimentary function and the particular integral gives the general solution. The known values can then be used to find the values of the unknown constants.
    • Thread Starter
    Offline

    0
    ReputationRep:
    (Original post by NeverLucky)
    As it has been said, it looks quite standard.

    You get the complementary function by first finding the solutions of the auxiliary equation: m^2 + 5m + 4 = 0.

    The particular integral can be found by using y = asinx + bcosx and subbing that into the oringal equation.

    Combining the complimentary function and the particular integral gives the general solution. The known values can then be used to find the values of the unknown constants.

    y = Ae^(-4 x)+Be^(-x)+1/8 sin(x)-1/8 cos(x) is what I got
    • Thread Starter
    Offline

    0
    ReputationRep:
    bump
    Offline

    18
    ReputationRep:
    (Original post by Jake Brookes)
    bump
    bump doesnt do ****


    Posted from TSR Mobile
 
 
 
  • See more of what you like on The Student Room

    You can personalise what you see on TSR. Tell us a little about yourself to get started.

  • Poll
    Would you like to hibernate through the winter months?
    Useful resources

    Make your revision easier

    Maths

    Maths Forum posting guidelines

    Not sure where to post? Read the updated guidelines here

    Equations

    How to use LaTex

    Writing equations the easy way

    Student revising

    Study habits of A* students

    Top tips from students who have already aced their exams

    Study Planner

    Create your own Study Planner

    Never miss a deadline again

    Polling station sign

    Thinking about a maths degree?

    Chat with other maths applicants

    Can you help? Study help unanswered threads

    Groups associated with this forum:

    View associated groups
  • See more of what you like on The Student Room

    You can personalise what you see on TSR. Tell us a little about yourself to get started.

  • The Student Room, Get Revising and Marked by Teachers are trading names of The Student Room Group Ltd.

    Register Number: 04666380 (England and Wales), VAT No. 806 8067 22 Registered Office: International House, Queens Road, Brighton, BN1 3XE

    Quick reply
    Reputation gems: You get these gems as you gain rep from other members for making good contributions and giving helpful advice.