x Turn on thread page Beta
 You are Here: Home >< Maths

1. Have to complete this for the end of this month but I've never been taught it? Any help would be appreciated, sorry if the photo is turned around
2. (Original post by MollieT3)
Have to complete this for the end of this month but I've never been taught it? Any help would be appreciated, sorry if the photo is turned around
As stated, radians are an alternate way of measuring angles, and soon enough throughout A-level maths you will realise that it is the better way. Angles are measured in terms of when in radians. You need to know that , therefore and so on.

To convert an angle of degrees into radians, you take that number and multiply it by (you can see that the fraction would equal 1 as the numerator is the same as denominator, just in different measurements, so the quantity remains unchanged). This would gives you where is the angle in radians.

To convert an angle of radians into degrees, you take that number and multiply it by (the reciprocal of the first one). This gives you where is the angle in degrees.

Radians are useful in calculating arc length and area of sectors and such, especially for circles with these simple formulae:

...where is the radius of the circle.

It will also become necessary to use them when integrating trig functions. Other than that I'm not sure what else to tell ya.
3. A radian is the angle subtended when the arc length is equal to the radius. There are radii in the circumference of a circle, so there are radians in a full circle.
Everything thing else follows from this.
4. (Original post by MollieT3)
Have to complete this for the end of this month but I've never been taught it? Any help would be appreciated, sorry if the photo is turned around
(Original post by RDKGames)
As stated, radians are an alternate way of measuring angles, and soon enough throughout A-level maths you will realise that it is the better way. Angles are measured in terms of when in radians. You need to know that , therefore and so on.

To convert an angle of degrees into radians, you take that number and multiply it by (you can see that the fraction would equal 1 as the numerator is the same as denominator, just in different measurements, so the quantity remains unchanged). This would gives you where is the angle in radians.

To convert an angle of radians into degrees, you take that number and multiply it by (the reciprocal of the first one). This gives you where is the angle in degrees.

Radians are useful in calculating arc length and area of sectors and such, especially for circles with these simple formulae:

...where is the radius of the circle.

It will also become necessary to use them when integrating trig functions. Other than that I'm not sure what else to tell ya.
(Original post by B_9710)
A radian is the angle subtended when the arc length is equal to the radius. There are radii in the circumference of a circle, so there are radians in a full circle.
Everything thing else follows from this.
Much better to use tau as then e.g. tau/4 radians is a quarter circle, tau/3 is a third of a circle, etc., whereas e.g. pi/2 not being a half circle makes no sense. For more information see http://tauday.com/tau-manifesto
5. (Original post by HapaxOromenon3)
Much better to use tau as then e.g. tau/4 radians is a quarter circle, tau/3 is a third of a circle, etc., whereas e.g. pi/2 not being a half circle makes no sense. For more information see http://tauday.com/tau-manifesto
*sees tau in sentence*

6. (Original post by HapaxOromenon3)
Much better to use tau as then e.g. tau/4 radians is a quarter circle, tau/3 is a third of a circle, etc., whereas e.g. pi/2 not being a half circle makes no sense. For more information see http://tauday.com/tau-manifesto
I'm not a fan of and in schools it's only ever that is mentioned.
7. (Original post by B_9710)
I'm not a fan of and in schools it's only ever that is mentioned.
Exactly. Besides, is just like without a leg. We wouldn't want any cripple irrationals here.

TSR Support Team

We have a brilliant team of more than 60 Support Team members looking after discussions on The Student Room, helping to make it a fun, safe and useful place to hang out.

This forum is supported by:
Updated: August 17, 2016
Today on TSR

### Loughborough better than Cambridge

Loughborough at number one

Poll
Useful resources

### Maths Forum posting guidelines

Not sure where to post? Read the updated guidelines here

### How to use LaTex

Writing equations the easy way

### Study habits of A* students

Top tips from students who have already aced their exams