The Student Room Group

Can someone PLEASE help me compute the Abel transform!

For g:(0,)Rg: (0,\infty)\to\mathbb{R} decaying sufficiently fast at \infty and α(0,1)\alpha\in(0,1), the α\alpha-Abel transform is defined as
Aαg(t)=1Γ(α)tg(s)(st)1αds.\displaystyle A_{\alpha}g(t)=\frac{1}{\Gamma( \alpha)}\int_{t}^{\infty}\frac{g(s)}{(s-t)^{1-\alpha}}\,ds.

I want to use the formula
xsdt(tx)α(st)1α=Γ(α)Γ(1α)\displaystyle \int_{x}^{s}\frac{dt}{(t-x)^{ \alpha}(s-t)^{1-\alpha}}=\Gamma( \alpha)\Gamma(1-\alpha)
to show that, for sufficiently smooth gg, we have (xA1αAα)g=g,( -\partial_{x}A_{1-\alpha}\circ A_{\alpha})g=g,

We can compute
Unparseable latex formula:

[br](-\partial_{x} A_{1-\alpha}\circ A_{\alpha})g&=-\partial_{x} A_{1-\alpha}(A_{\alpha}g(t))



=1Γ(α)xA1α(tg(s)(st)1αds)\displaystyle =-\frac{1}{\Gamma( \alpha)}\partial_{x} A_{1-\alpha} \left(\int_{t}^{\infty}\frac{g(s)}{(s-t)^{1-\alpha}}\,ds\right)

Now this bit is where it gets very complicated for me. I don't know if I should take

G(t)=tg(s)(st)1αdsG(t)=\int_{t}^{\infty}\frac{g(s)}{(s-t)^{1-\alpha}}\,ds

And then apply A1αA_{1-\alpha} to that; because it gets very messy and doesn't appear to yield what I want. For example, I computed

A1αG(t)=1Γ(1α)tG(u)(ut)αdu=1Γ(1α)tug(s)(su)1αds(ut)αdu \displaystyle A_{1-\alpha} G(t)=\frac{1}{\Gamma(1-\alpha)}\int_{t}^{\infty}\frac{G(u)}{(u-t)^{-\alpha}}\,du=\frac{1}{\Gamma(1-\alpha)} \int_{t}^{\infty}\frac{\int_{u}^{ \infty}\frac{g(s)}{(s-u)^{1-\alpha}}\,ds}{(u-t)^{-\alpha}}\,du

=1Γ(1α)t(ug(s)(ut)α(su)1αds)du\displaystyle =\frac{1}{ \Gamma(1- \alpha) }\int_{t}^{\infty}\left( \int_{u}^{\infty}\frac{g(s)}{(u-t)^{ \alpha}(s-u)^{1-\alpha}}\,ds \right)\,du

Therefore

(xA1αAα)g=1Γ(α)Γ(1α)xt(ug(s)(ut)α(su)1αds)du\displaystyle (-\partial_{x} A_{1-\alpha} \circ A_{\alpha} )g= -\frac{1}{\Gamma(\alpha) \Gamma(1-\alpha)} \partial_{x} \int_{t}^{\infty}\left( \int_{u}^{\infty}\frac{g(s)}{(u-t)^{ \alpha}(s-u)^{1-\alpha}}\,ds \right)\,du

But I think that this is wrong...and in any case, it's driving me crazy! I would really appreciate some help here. :tongue:
(edited 7 years ago)
BUMP!

I was thinking of then switching the integration limits to remove the minus sign, so that we have:

1Γ(α)Γ(1α)xtug(s)(ut)α(su)1αdsdu\displaystyle \frac{1}{ \Gamma( \alpha) \Gamma(1- \alpha)} \partial_{x} \int_{-\infty}^{t} \int_{u}^{\infty} \frac{g(s)}{(u-t)^{ \alpha}(s-u)^{1-\alpha} }\,ds\,du,

but I am still stuck.

Quick Reply

Latest