Hey there! Sign in to join this conversationNew here? Join for free

Urgent help with last question, need to find percentage? Watch

    • Thread Starter
    Offline

    3
    ReputationRep:
    Please help, not sure where to start to work this out, done most of my other questions

    The following circuit represents a “weak” electrical power system where the source impedance causes the load voltage to drop significantly under heavy load conditions. In order to compensate for this a shunt capacitor has been installed near the load as shown.


    [img] gAAAU4AAACpCAIAAADLB0OwAAAOYklEQ VR4nO3dT2jjVgLHcdWk0zRJs57pQJNpK SqMWrcnn4opgro9dEIvY8FAXQoTgyj4F h8ELcxBh0GT7ckXDYbOwQWz+Gh8Cj3pt PjixbOHxfjk7sWGhcUHw2qX7fL2oIns2 LEi23rSk97vQw4Zx7GebH2jP9ZYAgEAD ghRDwAAwoDUAbiA1AG4gNQBuIDUo6Sqq nyVaZpRDwqSCalHaTAYdC9pmiZJ0mAwi HpQkExInQmDwUCSpHa7HfVAILGQOhNkW TYMI+pRQJIh9eipqqqq6vwtpmkahmFZV kQjggRC6hEzDEOW5flbVFV1tuRVVcWuO wQlKakrColhFe12W5Kk0Wg0f6OmaaZpL twI1EkS6XajHgRFSUk9hq/TaDSSJMk0ze6c6XRKCGk0GoqiKIqC4MM Tw0VoLUg9MoPBQF7i7KU7d2i32zhWF54 YLkJrQerM0TRN07Rut6uqKo7MhSdBi9C 1kDqLnFNrsPUeKncRiuFBHz8Sl3qjQWS ZKApRFIJUwD93EVKUqIdCReJSd1+ndpt oWoQjgphB6vHgvk6aRjQtSRvzEBKkHg/z++qWRVSVyDJpNOhNcDgc6jFRrVbpPQ/JgdTjwTDIdPrqG8d0SvU103U9n89HXbE v6XR6OBzSeyoSwl1VIPV4cFbm3S4xTar 76k5F9B4/QKIoIvU1yDIxDGIYJFmfHZC41AkhphnC 64TUE6vbffWVrHfdkph6KJA6xAtS3xBS h3hJROqWRR4/Jr1emNNE6snR75N33gl/EQpZIlLXdSII5A9/IPfukadPSSiLNVJPDssiBwdXFqHxOOox BS9BqTtfu7vk4IDkcqReJ7ZNc5pIPUi9 Xi+TyRweHj579izsaVsWSaevLEJ7eyEs QiFjLvWXL19aaxqens5ep8uv399883+3 bv3j88//+tNP6z6gH6enp0+ePIn62fLlvffeazab NJ6EAB0fHwuCIAjC/v7+ixcvwpx0r1r9r7NWX7EI/eX586Cm9fLly6gWA+ZS393dza/pF1Fcfp3mv34RxXUf80aiKH733XdRP1u +HB4e5nK5wJ+BAMmynEqlnNRTqdT9+/fDnHolm53u7Fy75Pz+2mtEEP789ttBTe v27dvjiPYOmEtdENYf0vwGvPt1cEB2d8 mjR+TigsIwsQEfsAcPHrzxxhupVCqCGB Y24J2vdJrcvUuePAn20E+Er0XiUse++p JYpG7btqqqH374YQRDnU/98JC89RZ5/Jh0OjQmhdRnNk8dR+BXiEXqhJB6vV4ql SKYsGWRW7fI3h754gvSbFJdQyD1mU1Sx/vqnpD6DWyb1OvhvMGG1Gc2ST0KSD1wka UeIqQ+g9QDh9TZgdRnkHrgkDo7kPoMUg 8cUmcHUp+JS+rValWkcGYODel0OqrTNt aC1Klirqu4pE4ICepkSdr6/X7UT5UvSJ0q5rqKUeoQLKROFXNdIXVuI XWqmOsKqXMLqVPFXFdInVtInSrmukLq3 ELqVDHXFVLnFlKnirmukDq3kDpVzHWF1 LmF1Kliriukzi2kThVzXSF1biF1qpjrC qlzyyt19zKpMYfUZ5A6t7xSdy9+HnNIf Qap88W2iaKQbJZks/98//2/37njfE+y2SufIIbUt8ZcV0idO/fuXfPZ3vv7Vz7VG6lvjbmukDp3nj4lu7 uLqR8eXrkPUt8ac10hde6Mx2Rv70rnOz ukUrlyn/nULYsYBjHN8Ee6PaQ+g9R5lMstrtIXPk 7DTb3RIKpKul3SbhNFiWSw20DqM0idR/U6mb9AYiazeAc3dVme3dhuhzfCgCD1Ga TOI9ue7a7v7ZFabfEObuoxXJPPQ+ozSJ 1Tjx7Njr1PJos/vXatPp2GN7yAIPUZpM4py/qPc3Du66+97qYos+NzqkoGgxCGFiCkPo PUuWUfHPx7Z+eGi2SPRkRRiKIQWSaaFt bQAoPUZ5A6t/721Vf/unUr6lHQhdRnkDq3/vT8+R9PTqIeBV1IfQapcwv/iZUq5rpC6txC6lQx1xVS5xZSp4q5rpA6 t5A6Vcx1hdS5lYzU+/2+x1VxDw4OPvvss1U/bbVa9AbGXFdInVvJSL1er5+cnKy6Ku6v v/666kelUknXdXoDY64rpM6txKS+2Vzouo 7UgQtIHakDF5A6UgcuIHWkDlxA6kgduI DUkTpwAamznvpvv/22/YO4kDq3kDrTqT98+PCDDz7Y8kGGw2Gr1 XJmVRAE55tWqxXVKYQQCaTOburj8fju3 bt37tzpzV9zx7fhcKjreiaTEUWxUCg4s 3p2duZ8UygURFHMZDK6rqN5HiB1dlOvV Crffvvtl19+WSgU1vrFyWRSqVScjPsLn/h9Vb/fd/4cVCqVyfKnC0KCIHVGUx+Px6Io/vzzz6VSKZvN+l+xN5tNURSr1apt2z5/xbbtarUqimKz2dx0vMA6pM5o6pVKpVqt OjPWarV8rth1XS8Wi5utnyeTSbFYpPp0 QISQOoupO6t027bdGfOzYnd2yDebokvX 9QQsELAMqbOYurNKJ3MzduOK3f2V7VWr 1crC5fsg/pA6i6l3Oh1nT3t+xizLWnX/Wq1WLpc3m9a1yuVybflyPxBnSJ3F1F1+ ZqzX6+VyOf8H4fywbTuXy232Jh+wCanH PvVCoUDjk3QuLi5Okv6x4VxB6vFO3bKs fD6/5VRWofRHBCKB1OOd+snJyYX3Vbi20Ol0 crkcpQcHnwzDkGVZkiRJklRV3fhxkPpy 6tPp1Fiy2cDopj6ZTI6OjoLdS1+QTqdx Fl2EZFmWZdk5Itvtdp1/bvZQSP3G1CVJ2vjpFQghpmkOrl68djAY NBoNP7/vPWPNZrNYLG42Mp9KpVK9Xqc6CVil0Wh IkjSdu875dDp1y19gWZbu6eHDh9ls1vs +7L/W9Dbgl5/ttQiEEE3TFEWZv1VVVdM0/fy+94yF8JZY4G/jgX+yLPvfYq/X694Zn52dnZ6eet/n/Pyc6kbi9iil3u12JUnquteWX59ACBmNR pIkzd+68E8P3jOWz+c93myf1+l0fE5xA dXDfuBNluWNdx2Tikbq0+lUkiSfG9qrv NpXVxTFfaBGo7GwkvfgPWN+zpa9uLg4O jrK5XKZTGaD/6w6HA5FUVz3tyAQSH0ZjdQXtp663a6fp 33hbq9Sn8971b7Wtbxn7MYrVF1cXBQKh fF4TAjp9/vZbHb+GFuv17vxkJtt27u7uz5HC8FSVX V5raCqqv/lJ3kCT335SXYbbjQa7o52u902DMN95g3 DME3zmtQJIZIkjUaj0WjkHuIbjUaKojh 78gvH7XzO2I2puyfYOubPiplMJtls9sb 1/Hg8Pjo68r4PUGJZ1sIOpLNLidQ3+MVrU 7/2UJyTuhOzE+loNHKqduJ1blmZunMoTtM 098eGYbTbbULIaDRatZ8Q1L66q1wuFwq FWq2WyWT8/O/0Xq+XzWbXmgQESNM0SZKcxcb9/tp76rrucd3CfD7/6aeffvLJJ973WfdDUMIXbOqKokhLnNTd Vb3zjWmaqqo6R9mcW9z+HbPUB4OB86bo aDSan9L8bvy6M7bZ2WytVqtcLnt/Os38ndl/+ZPNsiznLBpN0zz+sg+Hw1VXJnT88MMP Hhc2dLD/vx5COFvOSV1VVSdVRVFM03TWyu5anVxu 0ru/deUUGlmWl3e9nC2BVe+peM+Y/9FvLIRJQDhwCo3PJXkwGDib7qqqqqrab rcHg4GqqpqmaZo2nU4ty3J+NP+WudfZc u4f6el0uuqYvPeMhbB1ncvlNn6jDpiC1 KmutG44MVa9tNlhOeLjyNw2JpNJOp2m9 OAQMqQeZeo3unHGfvzxx/Pz8y2nsgo+jiZJkHq8U7dtWxRF553zYE 0mk0wmQ+ORIRJIPd6pE2rr3gA/rA5YgNRjn7pt2/l8PtiDZ51OJ5/PM/4/H2AtSD32qRNCxuNxLpcL6vjccDjM5XLY dE8YpJ6E1Mnlh0lu3+d4PM7n8+yfSgHr QuoJSZ0Q0ul01rrk0zLnjXp0nkhIPTmp k8steV3X193Ntm1b13VstycYUk9U6uQy WlEUa7Wan+Bt267VaqIobvAHAmIEqSct dcd4PC6Xy+l0ulgs1uv15W3yXq9Xr9eL xWI6nS6Xy1iZJx5ST2bqDtu2m82mc9lm 4apsNlsqlZrNJtbknEDqSU59mSBsOySI KaSO1IELSJ3p1JvNZrCfzYzUuYXUmU6d EBLsxVWQOreQOuupBwupcwupI3XgAlJH 6sAFpI7UgQtIHakDF5A6UgcuIHWkDlxA 6kgduJCY1LPZrL7CN998s+pH+XweqQMX kpG6bdvn5+erek6n02dnZ6t+Su+KCQSp AzuSkbo3qldA8cZcV0idW0idKua6Qurc QupUMdcVUucWUqeKua6QOreQOlXMdYXU uYXUqWKuK6TOLaROFXNdIXVuIXWqmOsK qXMLqVPFXFdInVtInSrmukLq3ELqVDHX FVLnFlKnirmukDq3kDpVzHWF1LmF1Kli riukzi2kThVzXSF1biF1qpjrCqlzC6lT xVxXSJ1bSJ0q5rpC6txC6lQx1xVS5xZS p4q5rpA6t5A6Vcx1hdS5hdSpYq4rpM4t pE4Vc10hdW4hdaqY6wqpcwupU8VcV0id W0idKua6QurcQupUMdcVUucWUqeKua6Q OreQOlXMdYXUuYXUqWKuK6TOLaROFXNd IXVuIXWqmOsKqXMLqVPFXFdInVtInSrm ukLq3ELqVDHXFVLnFlKnirmukDqfer3e 8fHx66+//uzZs6jHQhFSnxEEwQL+HB8fC4IgCML+/v6LFy+iHg4t7777LlJ/5aOPPsoDZ2RZTqVSTuqpVOr+/ftRj4iWjz/+2LbtSMpiLnXg04MHD/b393d2dm7fvj0ej6MeTgIhdWCCbdv1ev 3777+Pavs28ZA6ABeQOgAX/g9rEniAlGGEmwAAAABJRU5ErkJgggA=[/img]
    Find the percentage change in the reactive power supplied by the capacitor if the load voltage varies by 8.3%. Note that the percentage change in the reactive power is taken with respect to the initial reactive power supplied by the capacitor, that is:


    [img] gAAA2kAAABxCAIAAADAh3yaAAAgAElEQ VR4nO2duZW0OhCFSYo4SIIUCIEIiIAAF AA+zrOwsbFxcXnGPV2n/tLSAnphZu5nTfcArQ3pqlQqFTshhBBCC CF5FN9OACGEEEII+TFQOxJCCCGEkFyoH QkhhBBCSC7UjoQQQgghJBdqR0IIIYQQk gu1IyGEEEIIyYXakRBCCCGE5ELtSAghh BBCcqF2JIQQQgghuVA7EkIIIYSQXKgdC SGEEEJILtSOhBBCCCEkF2pHQgghhBCSC 7XjE6Zp6rquaZqmafq+X9f12yna13V1z iFJbduO4/jtFBFCCCHkr0DtGGVZlqZpyrLs+36e52 EYqqoqy3JZli+mqu/7oii6rhvHcZqmpmnw8YtJIoQQQsjfgdo xzLIsZVnWdb1tm3y5rmtRFGVZfiVJ27b VdV0UhTE0tm1bFMUwDF9JFSGEEEL+FNS OAZZlgUbUwhHAzjdN0+dTFdOI8zwXRVH X9eeTRAghhJC/BrVjgKB5D2DJ2Dn34SSN41gURVVV/r+2bSuKoihYlYQQQgh5OxQclmmaEgvTM P59XjtWVRWTs7CSUjsSQggh5ANQcFi6r iuKou/74H9hkvzwmrWoQ38NfX+YJLlmTQghhJA PQO1oSXg0Yq9MURQfjtQzDENCHULscqs 1IYQQQj4AtaMF2nGeZ/9fzjmj0rZte7rBeVkWrUS17XAcxyYJko HfbZrGf/i2bWVZBuVs27ZlWWKZe9u2o7bS9No9IY QQQv4m1I4Wox0lmiNUWlmWWqUhcnj6gY jFiL+dc23bHk0SVqVFO67rKgIUe3f8FX Zsvm7bFpLRORdbhU+A2ONH7yKEEELIL4 ba0QIjn3NuXdeqqqqqgmiDprx4iEtd1y cCMWKtHJusnXMSolw8HX0/SBw8cyWp+75XVcWwkYQQQgjRvEA7zvMc 3MPxQxH7Ytu2sLpBQfrC0TknRkcc8TJN U9/3TdNIgTRNg2uwPA2pd0KAynEyRVEsy+K cw64d/VsCjsMpyxI/3fe9pBPJkIMW5d51Xfu+xwmHsLlCsH73 EB1CCCGE3I2r2tEspx4CegUaCA+5yYHR OI0Q3n5QjXVdQ0WJ1+A8z23bwjK3rmvb tmKYHIYB+1qcc7BizvOMzMrfJ1LlnINr I5Ikvoz+A7EvG6bTaZpwI9KJAi/LEvIR4hhyua5rmFoRgWiaJjo7EkIIIcR wVTtCx8Q2l8SA2IIAatt2GAYtIi+uC7+ KbdvmeZZTradpquta/P+maYJPIaTbPM/QZ/u+932P9eVpmsZxFAUmWu0K8zzP84yNLN Cp/kYZbTIcxxH6fl3XdV0hK1HCMD3uD6Mmb JBSlS9J7XXmeU4snW/b1nWd6Pu+72NhjGQyID6ghBBCCDnBJe0 IUSJWw8y7cFQ0dniYkR5K6FuH/sWA7PAlMlQLdBvkGv6uqqrve0g3CBr8D ZPetm3XbauQrbGSh7LU6WyaBj+KG1HsE LsQx3gIbsReHCi2r6xZr+sKk61MJ4LB2 KUhNU0zDAOqqaoq06iw0I/C77oOt9CPkxBCCDnHJe2IfSQYjDNNjzL ex4yLkAvBw/e+BdadfQVTliW2pGzbNo4j0owTArGfGo ISq8Pyd9u2h2y0QeQcQhGvJsFaUEIqwY go6+kQkdh/LQbItm3ruu667r///oO4/0rYSKQNPgwJ7QixqFUgakrvKIca1s1JD iu/g3cEIYQQ8uM4rx1hdJznWaTVU9OjCMeE IpGnXRdYLyTopDiOI3wEdxUEBxY7sX51 XSe6B0avV51niIXy4L+guuSj3r4j6ZFd 5Nu2iekRm7ihMqGGv75XJqYdg2ft+MHb MRUxt0N0Mpo6IYQQcoLz2lGC10h46vS2 XIiq4KqiBoaimKmJpEEcctlG85UEpJeD p2k65JAQawyYY/i7eXA90iBS0ohs3Hsr2zYhhBDyUzipHa HwZEgWY2GOQTEta8STj9rxBDBtptX5W0 HDiDUD2KoPRSmPNQbYDn1TtzZsS1sKas cicj44IYQQQhKc1I6yuwJo02PQjUwueB r2RfbfUDueYxzH70oi1KAvH2PfpzmqHf X3Mf+He/pFEEIIIT+CM9pRYtPoL9OmR1GET6VDen uEMAyDO8KtNm7/enyZeE447tSOhBBCyM04ox2N0RGkTY+I 5lhkBN+RsCzpcR2xuPNhTJYPo8XiaeG4 UzsSQgghN+OwdgwaHQEC6QVVgoRITAdG kc0NPNHkFyBnDp0Wjju1IyGEEHIzDmvH oNERiPLzNaJox/TDY5EUP0BBMjhaqhKX+2K95GtHOeZ7p3 YkhBBC3sAxNQCjY2KjdMz0mKMdJYhPWZ bcAPsL+IrdEdcjRKXEe4ppx69HrySEEE J+HMe0Y9M0aRuSNj1q/Sf+jvKlnBYt18iInrOvhf6ON+fd/o6YpcS0I66X+OEx7XgiPYQQQsgf58DwC V34NOi0mB71eC/7rKELEb9af3M0NM/RfdZcnfwkH9hnLQ1GfylHNUp1w5Jtbkc ThW2SEEIIIYc4oB3F0pNGNkrrpWdZj67 rGjuycapy13VVVYkOOBQ1+kezbds0Tc6 5YRh+2crpZ+I7yr5+PSvAT2jTOEyMxjy JpsjpBCGEEHKCXO2oF6Pz0UO+HGaNkRu LyKIay7L8IyEYt21DDMu6rp1zsrfjd7h 4vupcGedc27Z6HtI0jbEf47fqusaX4zi igemGJJMW59y2beu6wn0itt+LEEIIIWl yteM4jof8C4FZFlzXtXlsmtH0fS/KaZqmdByfH82yLFVVlWWpbY1QVL9jCfV V51nHWpRxmRC9KNMS/+HLskCDypW6vRFCCCHkEF/YLrCu6zzPwzDM8wwHNTFPYiHyt2pH5M4 IRwBx88sWrz8DNl2N45huNsuyjOPIdWp CCCHkIl/eaoqgP2VZYkcLlia/m6T3gdXSoFku8S9CCCGEkPvwZe3ou1H+ VsuQqOTgf7EP6fMR0QkhhBBCDvH9EHfY yhDbTvtrgDqMbSLBmjXtjoQQQgi5Od/XjsuydF3X9/3v3mcNiRzMo0QlpL8jIYQQQm7O97XjHy GxIo991gh4KTzdMLRtGzcLE0IIIeTDUD t+CD+QteCHqnbOpc9+3Pe9aRpZAR+Gge vdhBBCCPkA1I4fAjupp2lCbHAJVYg44S Zc9rZtT9evl2URu2NVVb/YVZQQQggh94Ha8UPgEBQYC+u6RlBrnJh nNtDM8yxukYhKaL7c930cR4jLdV2HYcB DfusWdUIIIYTcB2rHzyEHMLZti2CWcg6 KeDcuy9I0jXyP877LshTFue/7MAxN0yCI+jzP+Ns5x602hBBCCHk31I4 fBWZCBEKvqgoWRyxh4wIc2Yw917A1Sug i5xwua9sWtkasWfd9/zvOMySEEELI/aF2/Bo42ht7aPQxzcMwyEaZZVmKooBVsq5rc Yus61pWuuu65kYZQgghhHwGasevAe3oR +epqgqr0rvSkRCRwzB0XYfDePA3YkMuy/LrA2QSQggh5A5QO36NZVmweG3CNNZ13T QNnBe7roN9EdqxqqplWdZ1hQfktm34u2 kaLlsTQggh5ANQO94OKEL8va6rKMtlWW Q3jP5+2zbusCaEEELIZ6B2JIQQQgghuV A7EkIIIYSQXKgdCSGEEEJILtSOhBBCCC EkF2pHQgghhBCSC7UjIYQQQgjJhdqREE IIIYTkQu1ICCGEEEJyoXYkhBBCCCG5UD sSQgghhJBcqB0JIYQQQkgu1I6EEEIIIS QXakdCCCGEEJILtSMhhBBCCMmF2pEQQg ghf46+78uyXNf12wk5xrIsbdv2fb9t2z iOTdP0fX/oCVVVdV13JQ3UjoQQQsg/bNvmPMZxTF8zz/O3EvxuxnH0C8SormmazAXfSm0OwzAURf HjqmwYhrqul2Wp67ooirqunXNHM7IsS1 mWV+QjtSMhhBDyD+M4Fh5t26avublauo JfGkVRLMuir4Ga0XwrtU+Z5zldX/dUluu6lmW5bdu+713XIYVt255QgWi9wz CcS8l9q/bdwNJrmr7P0wvedO/X6fu+aZpvp+LXsizLiYWGp6BVG+vIm2i a5q0t5JN5+RF8oD/BW/+jO67XIurQqEYB9puyLKdp+nDaPs+2ba IOg+u827a1bYviupvqMlRVJSJMmOfZOd e2bVmWyObdcrFtm7yeyAK+PPe0pmlOL9 kf0I7oVoJdOQbCn9XL55h5p2kqiuKcXR fPPy3qv07TNHeeNf50MOt9ufZCq/uM8ePddoVP5uX+oMFcdFF6Ct76T46X27 b1fV9VVV3XRn5BiLw7y2nWdUU7j72qGC PupjDeB1pIQjtWVRXT2fcBUwK/b3HOVVXVNA1Meneu2WVZElOaTFAO516x A10/Gk1QpT41/wZZ1/Vjli1/Mv1u7QiL99e14ziOT41bkP7mS2rHF+Kc M7VA7fgUPy++w9nf4bdqR9ix2rat6xpG FAEWrBcaQU/aV+LaEVLpu+r2w/R9nxBVzjnfmHdDqqqKyV+A1+2e2nEcx2 3btMDALOvc02A1P3HjYe0YfIvOaUdk/tAt5whODTPdS3/6mnXbtk8FSrAiqB1fCOay+htqx6f4eSn L8i+bIT/Qn3xYO2qzh+mlXz73nuf53BgJnRFs6ti le3+p9ELwVhZF4a/RwxL2dXPJU5DOuq4T19xWO+I1GYYBryp qoeu60x0jZmgnPC6OaUdIVL99xLTjuq7 YnDWOo9H467pixjk/0G+g3DhN08U3UzwwhmHADyElWjvO8zwM g5/Ibdvkep3ZYRiQtsTEZV1Xk6n94U6ReS/+XpYlmDYBF2CLn/9zeEmkkIO/hc7RVITWjkh2oi6wvS6RyGCCx3H0h0Pk HVk2/0V1IA3BYsGNsXRu24Z0ZjYq/BzaYbDoJCPTNCXGdVMLuFJrR2ntsX4q/3WIaUdpeLGfkMwOwxDLCx4yDAPKPDag4 lHBh5hGiCvxTD9hJi/42HWdLkYgbSaWeF3CGn0NajORffkhv5H 7WV6WRd4av+uTn17XVfqlWBtDmzd9kf6 4risadvAJutnrvAcbkmjHYJPLz76ffnM xkoqeGQ/U2vEl63E+57wSxWhivkci/5ohHNUU7GTe7QD9KtCTpJfj7qwdy7KEY wD8MpumufKmYJJ2wvP+sN0RTcesXAe1o xi3BUkf3jqDVJLMbEBZllfeT3F6FZBO8 Uc0F+hC9PPl7yOLFbqxa2J7lLk3NkXDv dM0yZQXmMUR7bnslxXahMH8UKIiUN3+R kJTF8uymESmWyFGC41u99JNB7Ms1WFyD ZWpi9dvM+M4pi/wq8DUV13Xegj0MxLsN2OXiXYUxxr5FTM 2m/eoLMuEuPG1o19B/ghq3jgkzMzlTJnDR60IaUc0qqqqzPfoO mS6j07Q5F1nTeclUdqmAP3E+x2RgAu2b TMNzzzBZMGvaG0/88uq+PetQb4kxAYeiML0J0u4AKKtUDUr H032q6rS7cc0e01wUEQ5mK5DXpZY9nF9 cOkW/9INEgnGW19VlbQT6TCxEFxV1cvteV3Xn RA3Mde3uq5/hFR6LSKqTD+Pir7DUttTxJaUuOa22nF/zITxd9oIlcN8dgXssHbcH0Wvh3xfY6G/rqpqHEfYM9A5osFh6hm0O6IJIvLQOI54 b69E75znGQ8J2h1RatM0TdPUdR36WWku Jl8YIdq2xQwe+0BjE1mjHZGGvu9xL0I0 xTKVkzYRjtjRBiMH7sILLONNwu6YqAgZ TfH8cRxl/JZkiyBu2xaVhY8x+7mkR1pF27b6HYaWQ hFhPUiPu/I+4wnTNEmSMP2apgmVgm/ksTJX1o0q3S8457D9C5WlW++u3jedkWC uYXcpInZHpBMtE27a5s1CnZZl2fe9zlq 65UhKtm1DGYq5Di+meYJsg9OZ1fViWpp WY8FkSIvSX6LYUZvIPtag8UxUpVYMOi8 wChYhuyMEgSTeLIzID8FJaJ5naVRSAhI mDXZHZD/WmeJ2U/54gnQFVVXhTcebi4Iy+ZJfGccR5l5ffk mHs3t9UaL9yEOk9hGHb9s26YViY7x563 WvgiwHHcWCwlenQV5GZFOmYbqcxd9R3B y3bXtt0OZzi6pSAro9IyN3jikdjE+ZJk cnBTcPoZZ/ij9JjmPGnbXjaxH70dEbz2hH6ZKkrzT9 GpqXcQQRnSFfBj3qcI3uhq5sBQIu5Noo Pbj+En2rP7lPJDjzR/3fenqvGb1M2tB5GWM1vtQ3JkZBIZgvfG mKXVa3dZJ0X4yGGPMrwqiQ/zYGq8O0KwzbpmzNa2+Svf87KudgLC5HM +LXQrBvEo2LjzA7mfymF1yMdoTIMxfL4 m8stSgcSTA+GvcgGVATT9A/IRoCeUEBGtOvsQeYvAQXN3zMK+AXl7GE mcyChBhCkepkoLtLvN1GSQe1SLCuxfbv Z1/aj06kvCD4aAy9ktREh4BfNBfoBhM0bPv NQ4MSg7gv/p23YMonD+m6TlbQZFqYmGOfAM8/tJAlVlhpmRjLEk0RS0Zt25oR8HSy9UOw NPx0NHmTdtxDm4fatg3aiY8KL/hXPL0s87GyNmJmCzmi8O9ox/2s5/oZ7bg/eiXp6Uy/FltBhxSQxuFLlqD5FL1qvvDySWhH06rM 1v2gdmzbNqcXMD+K8cM5l7MQk5M27Sqr Me3gonY0hYZhQBJmJgMgsYUN+YIFLp0k gGZmqsMIPn8wM4nHeGnGNlkNzEkG8BVJ/qgW045+q9apmkNba4PviGBKI1gXIlNiq cUFZlHYtEYxPySeoJWQUZPBBEBAmEI+q h2NPHIP9w+5wBRg0FXctHP/+brigi3Qf5rRjrHuUWSNzMCD2RdjtnkI Xkn8jTI3P5SjHU1p6DfIz36irPTtiEVn PC7gsIVFGNiG8YLLxDUt9WDUP8qhbnxX MkIKH1Ipdr0048KbolwXIghplNOrvw+z eQjl42cNvfchmY5RUteL80Ir5D8W8UP8 tCHx6do/pB3FhTeHG9qqP6od939Xrk2/FutMzYw/ph0xGdXE8rauq542xdpTQjuaL4MdtHzU rmNYuU4Ul3m+dsjDulv+vcHEICW+EjVv y0XtGEyYpAHZMZVl1tY12kGzCQUERYXK xNp02UH18FQ7Hm1UktRhGDCM6TRnZsTg 10JMAupUiWncT3mmdozl0VQudmzEMhtb 4kkXoFFCvpoPZqE4rh2ReNNmjNFU628j hZEw+K4JeE5MDho7oi/Q53mGG4C8DoWnHf3yNHLQzMCDXZNfhrp mjfrcI7Mv//Z0XRu1HeuINLJw7+sA3A4fXLg5mo0yRc RGLtO/K2Tu7cPFSNLTgI5SvzrZy7K86iCA2Ivw MUznGQvoiM780JPN/kg0YFNusKceSqr5Mt1xgUPaUVYScni62 HW9VcdI/+LTbNq78i811aBXroPa0R9QjRkpph39w RL4SZIKBukB9bp23B8NVw9RsU7Tfz7u1 QoyeGNm2mL1/WHt6GsykHCaHsdRBAqGCvleSrXve/fYB/Am7RhrVLsS+gjehpmJKUkcQi8tQWfEx6 +FK9qxiR9Ic0I7yp6Vuq6DmT2nHbUSMs aqWN7349pRJx5txiReXGVwAVqUXl8Lak cQmxJoPWpspftDJ6G9IT2mAGPacf93rR zviDSqE9pRJ6brOnEgTgyHOXXtB9Z5Oh wGHUsE5FHcHCGaoU0hEF+rk6RXyd+Lo3 v7p7Gvgz3nC0m0n88g7gTzPGNEe5MtTb eEcyT62PS2nkPa8aeT7smjd+Vf6r8Ssn JtRGHM7mi+j2nHfC80YyuOtYYXakedd1 mGzv9RIJrjkKHUJCbWy5sh593a8XQvKQ sKqG6xIugyyamOTO34tBA0Zs8BiD1kfq yCJSYD57Rj7PCDBKY0gk4F+yOD+hqdeG MXPKcdd2WQc54PRhFabzVr5Tna0TcQmo fsavJQPPSx71N4aISQafPumVfFY9Wsu2 VqR7E1+o4W57QjtA6yX5bl05PiMuta2p VxQwoi+jVRzjqaI6SJzuYL4+BAQB8VBM g+fBwTAR2xPREhVPR4ZGJ4wYiAh8BqLn GvNJid+t9nalPxjMwns5zFzBY7EBkp9+ 0msuyAOZW+AF9KwcIboXns+pcrsUXST9 I0TcMwmM1VmNf5/efTGdRO7ZhzV/6lwSaL97z517cjFsrBrPXgLl3ZQYfx6z jP52m/rB33Zz7y6dlhWiXnpC3hhaZXqRIpFPyK 2PO0o78H5RAysO0R/78c9fBUO4oqPWpm0AUSa9KC9jMLPtBIp RztGAt2k8CURtCZz6yN+oVjMutC/nk5u/NEMvpuTEFHTLO+HKx9X9CnE78/Tn2NTSz9vS85iGYypzK40D6kfLuj+Hb7 SzdX7I75O4txu6lrv0hl+4vJvo9sXfIN tIJZpG6aRp6J9L/KrIVCuxLiMV2YzcPlA2sFKEbnHLw5pQU 2TYM2KeGKilDoAyx64LRGPVKkOyLhxF6 ZzAg7OoRTcI+UexwJrV1WmoezDRqY2RQ La65swIfLR/Gw3+OFgl+NCa8GRzKcXYleReoX6fRftJ zp4t/RjuntrQmuakeZgpv+t1E7BIHz9jXLrEI/EC+SsQ3oaLonCHboJ7SjicyMoS5TO/rhBi9qR6yr6i5JnPB0RfgyyMevrD1PO7 rHlhEzq471ziYYldlvYYxksnB8UTvujx HIBGhMNCoTckUKVrpsk5GnQsqXODnaUT JiXgdMyoM/ZEoDZahj/kle5L0zEwA/szIh0S1NRtNYlnc1ufKburR/v7qNxjK1b/o4Y2UXj2RdsEhDbHVC6s5/QxNZE1lfhCLCSp+A8dsMQulZpayqBxvM Ue0or7ZkP5EpuV7XtXiY6AKRJlEk47lC dIqHQHDM9qM5ItTXHjIhX6Q5G0VZWvvT xMixH/gIlwltyJ/nGa1Rtzqzm0p/NFOmtDnjM0jii9DKL7IMYdA8NtFjjChU cFkt7JxziEGmi0623stj0UjKshTBik5D KsUcYqkN2JqcCdWttGPQLL0si4vs8Uic FOBzYl0OXNWOeyTQvIxAmIHJuokffKd4 bLaQqIToksRBLe23noO0A/QdKO4T2hETYkyDxGMvc91ZcoTZVbpd5q TN5Kt5eOUHQ1hjuSrWPmQeiWtQETnacV fB0pEGIzsMMvVETD7cKGOPhB6U/77E33FXBk6TzlijkpaJ6Sx6K32uoGRE9 oSmB1EZkqUWMrWjKKrM18EvDXk9TSORC 3TtY1oPM4lOm+x1kIdAkgY7BI24RvnTC fcIXSk2ieLfCZ6fF+lG2rZFaaOm8A1+y 2+BfvBwU1kSrlK8HtNWZJ2Ywhs+8T1sI ZKpIls7yksd3F9/VDv6sf1xV2wy2Ty8PwsVsbwImZekymLG Kn9yGwyH5B9aLWZOf1/2FSDgzjnPSQt5mhj3CPyOj+OD4jFSIAa t2T+O5+MuE/PIKKp04/kM0kSDPd48z8ijNFd8E8wyMoLYq/qQod2LpuQ/dvfCAqDdSkpMJyYkQtkjhm6jtrgV/+qTT4KwwcEVdpRe13UYnrQIwTcw3GKWk v6V4LJSDge0I1KT+JdRUfCGkZ606zq/w3KPfSe6bjBZ16Kk67qLNSezZ4SV3h+t xDdC6IyYj7hFj+WJnsg83z1c5mWoS1Rq TtrAPM/SvOq6dp4DOGoBvXBibiEVIUbEYHUjYb6 FRrKG5ZWE3RHhLaRm9eTPJBUdRKI6Ekl C4n0fI2lU8HuLNSoEwpCW2fc9bpcXzM9 I2kyFnlHXAvLiv7Hop/Q367r2fa9fB/jDBX8oWBrzPMsTTJnv/76nkqS+703a5A1C68W+0USLkp9u4sYex GmXnzbNxs/LsiwSQlxOGfATj30huEWWO2QnjdSs2Rk t7xEmCU/XeZE8fwTSiUSmYKbVeiI9FAUjqwe7Jr/96EqBiQuTMVmXbP71L/JvR2uXRcNgr7JHon5qJGa7/hJzJ3kamoc/cDjn0Myu7JMwQMueuzc4QQ0SnHKjQv0p vXwDy2vwt8zEI/j8z1P8u+HMxwhB/xu0TPmvH3sh6K6gH2KckYyVGhI8KIkSz maiHX2+oh2dt9Nu9/w4oSNRJiYUVJMRB9SfvGXy/VZICCHvAIOEr1yvHzfwPp5GGs8nGD3ne rhccNST8kcD/5Ych2m4J5p7i4fbiQzq+jJZlcavGFua9 gjfH86O+lFfYU7GKRQZp/2XsFKBv2U9Wi4QK6O4A4mexs6bXb3Osh dHz15kwy78UmSPtvE0A8bX5c74lmbzjV 6RMJbXp1bqK70BtSMh5HfiH6YM0KWec3 17N6/SZGZkNd9ftF2Jm/trNzX+dDASBx3rp2mStRQTtlA2HsHEq1 e9ZYMRNKWoBL0GckNECMLnZ/ecF6VMcBDo/jiREh5ryLtcD6u5eSyy7zs7IkqoHFeLh hqzmt+5DAVf/xlLpHZfKf71CI91gEJsp3wO1I6EkN+J7 NUQoxEsFhBPL1wPfRXo618SaEIHvRIT0 fw4vP6KzRXBX25ruP0iGMXNSCy7Z6Ra0 QKl+WG2AHedbdvE3xHb2IuHGy7iZkMKv PacxpeD+APIkV5LFecEOdZcygSeJ9pjB x/h+YBv4HXgVERJCETx7ZNi1P+KCUQsmt9/8nNUO+p1/6c7q8w2tUNQOxJCfi3BjTKZvmufRKftV eEMgxtlCm/bfj56g63Zk0d2b6OMYDxcYRWT0lvXtes 6+BDLN9j7ta4r3Ge1kfIrvndHQbJ1AAT d6nBql4kKhND9+pq+7xG1MfZYec74OPN dnolSTVgWjSn0thzVjnoBOq0dxfp7LmH UjoSQ3wyCWWB4xjBzQ9EjYUpemzaEnob gcM4Fg30cehpK8v7a5cPAxw7brb6dFpK LMQDfk6PaUbujJLTj9WBP1I6EEELISeC lhzBe97djEQ0cA244mRSuaEdz4J9GQlW chtqREEIIOQ/c7HT4IUJegq8dTdgmaEcIQRNz13nHU70 QakdCCCHkElSN5B342jG48Qgr78bjVjZ gvdNg2kYAAACtSURBVCNh1I6EEEIIITd Cn0WCJWYT9BtHFmFLO76XMxtxLOH7jI4 7tSMhhBBCyK3AuTKIgo6gnvqUXRw507a tiQmFDeb411u3AVE7EkIIIYSQXKgdCSG EEEJILtSOhBBCCCEkF2pHQgghhBCSC7U jIYQQQgjJhdqREEIIIYTkQu1ICCGEEEJ yoXYkhBBCCCG5UDsSQgghhJBcqB0JIYQ QQkgu1I6EEEIIISSX/wESyrmOzaxO7wAAAABJRU5ErkJgggA=[/img]
    Attached Images
     
    • Study Helper
    Offline

    21
    ReputationRep:
    (Original post by mbooker)
    Please help, not sure where to start to work this out, done most of my other questions

    The following circuit represents a “weak” electrical power system where the source impedance causes the load voltage to drop significantly under heavy load conditions. In order to compensate for this a shunt capacitor has been installed near the load as shown.




    [img] gAAAU4AAACpCAIAAADLB0OwAAAOYklEQ VR4nO3dT2jjVgLHcdWk0zRJs57pQJNpK SqMWrcnn4opgro9dEIvY8FAXQoTgyj4F h8ELcxBh0GT7ckXDYbOwQWz+Gh8Cj3pt PjixbOHxfjk7sWGhcUHw2qX7fL2oIns2 LEi23rSk97vQw4Zx7GebH2jP9ZYAgEAD ghRDwAAwoDUAbiA1AG4gNQBuIDUo6Sqq nyVaZpRDwqSCalHaTAYdC9pmiZJ0mAwi HpQkExInQmDwUCSpHa7HfVAILGQOhNkW TYMI+pRQJIh9eipqqqq6vwtpmkahmFZV kQjggRC6hEzDEOW5flbVFV1tuRVVcWuO wQlKakrColhFe12W5Kk0Wg0f6OmaaZpL twI1EkS6XajHgRFSUk9hq/TaDSSJMk0ze6c6XRKCGk0GoqiKIqC4MM Tw0VoLUg9MoPBQF7i7KU7d2i32zhWF54 YLkJrQerM0TRN07Rut6uqKo7MhSdBi9C 1kDqLnFNrsPUeKncRiuFBHz8Sl3qjQWS ZKApRFIJUwD93EVKUqIdCReJSd1+ndpt oWoQjgphB6vHgvk6aRjQtSRvzEBKkHg/z++qWRVSVyDJpNOhNcDgc6jFRrVbpPQ/JgdTjwTDIdPrqG8d0SvU103U9n89HXbE v6XR6OBzSeyoSwl1VIPV4cFbm3S4xTar 76k5F9B4/QKIoIvU1yDIxDGIYJFmfHZC41AkhphnC 64TUE6vbffWVrHfdkph6KJA6xAtS3xBS h3hJROqWRR4/Jr1emNNE6snR75N33gl/EQpZIlLXdSII5A9/IPfukadPSSiLNVJPDssiBwdXFqHxOOox BS9BqTtfu7vk4IDkcqReJ7ZNc5pIPUi9 Xi+TyRweHj579izsaVsWSaevLEJ7eyEs QiFjLvWXL19aaxqens5ep8uv399883+3 bv3j88//+tNP6z6gH6enp0+ePIn62fLlvffeazab NJ6EAB0fHwuCIAjC/v7+ixcvwpx0r1r9r7NWX7EI/eX586Cm9fLly6gWA+ZS393dza/pF1Fcfp3mv34RxXUf80aiKH733XdRP1u +HB4e5nK5wJ+BAMmynEqlnNRTqdT9+/fDnHolm53u7Fy75Pz+2mtEEP789ttBTe v27dvjiPYOmEtdENYf0vwGvPt1cEB2d8 mjR+TigsIwsQEfsAcPHrzxxhupVCqCGB Y24J2vdJrcvUuePAn20E+Er0XiUse++p JYpG7btqqqH374YQRDnU/98JC89RZ5/Jh0OjQmhdRnNk8dR+BXiEXqhJB6vV4ql SKYsGWRW7fI3h754gvSbFJdQyD1mU1Sx/vqnpD6DWyb1OvhvMGG1Gc2ST0KSD1wka UeIqQ+g9QDh9TZgdRnkHrgkDo7kPoMUg 8cUmcHUp+JS+rValWkcGYODel0OqrTNt aC1Klirqu4pE4ICepkSdr6/X7UT5UvSJ0q5rqKUeoQLKROFXNdIXVuI XWqmOsKqXMLqVPFXFdInVtInSrmukLq3 ELqVDHXFVLnFlKnirmukDq3kDpVzHWF1 LmF1Kliriukzi2kThVzXSF1biF1qpjrC qlzyyt19zKpMYfUZ5A6t7xSdy9+HnNIf Qap88W2iaKQbJZks/98//2/37njfE+y2SufIIbUt8ZcV0idO/fuXfPZ3vv7Vz7VG6lvjbmukDp3nj4lu7 uLqR8eXrkPUt8ac10hde6Mx2Rv70rnOz ukUrlyn/nULYsYBjHN8Ee6PaQ+g9R5lMstrtIXPk 7DTb3RIKpKul3SbhNFiWSw20DqM0idR/U6mb9AYiazeAc3dVme3dhuhzfCgCD1Ga TOI9ue7a7v7ZFabfEObuoxXJPPQ+ozSJ 1Tjx7Njr1PJos/vXatPp2GN7yAIPUZpM4py/qPc3Du66+97qYos+NzqkoGgxCGFiCkPo PUuWUfHPx7Z+eGi2SPRkRRiKIQWSaaFt bQAoPUZ5A6t/721Vf/unUr6lHQhdRnkDq3/vT8+R9PTqIeBV1IfQapcwv/iZUq5rpC6txC6lQx1xVS5xZSp4q5rpA6 t5A6Vcx1hdS5lYzU+/2+x1VxDw4OPvvss1U/bbVa9AbGXFdInVvJSL1er5+cnKy6Ku6v v/666kelUknXdXoDY64rpM6txKS+2Vzouo 7UgQtIHakDF5A6UgcuIHWkDlxA6kgduI DUkTpwAamznvpvv/22/YO4kDq3kDrTqT98+PCDDz7Y8kGGw2Gr1 XJmVRAE55tWqxXVKYQQCaTOburj8fju3 bt37tzpzV9zx7fhcKjreiaTEUWxUCg4s 3p2duZ8UygURFHMZDK6rqN5HiB1dlOvV Crffvvtl19+WSgU1vrFyWRSqVScjPsLn/h9Vb/fd/4cVCqVyfKnC0KCIHVGUx+Px6Io/vzzz6VSKZvN+l+xN5tNURSr1apt2z5/xbbtarUqimKz2dx0vMA6pM5o6pVKpVqt OjPWarV8rth1XS8Wi5utnyeTSbFYpPp0 QISQOoupO6t027bdGfOzYnd2yDebokvX 9QQsELAMqbOYurNKJ3MzduOK3f2V7VWr 1crC5fsg/pA6i6l3Oh1nT3t+xizLWnX/Wq1WLpc3m9a1yuVybflyPxBnSJ3F1F1+ ZqzX6+VyOf8H4fywbTuXy232Jh+wCanH PvVCoUDjk3QuLi5Okv6x4VxB6vFO3bKs fD6/5VRWofRHBCKB1OOd+snJyYX3Vbi20Ol0 crkcpQcHnwzDkGVZkiRJklRV3fhxkPpy 6tPp1Fiy2cDopj6ZTI6OjoLdS1+QTqdx Fl2EZFmWZdk5Itvtdp1/bvZQSP3G1CVJ2vjpFQghpmkOrl68djAY NBoNP7/vPWPNZrNYLG42Mp9KpVK9Xqc6CVil0Wh IkjSdu875dDp1y19gWZbu6eHDh9ls1vs +7L/W9Dbgl5/ttQiEEE3TFEWZv1VVVdM0/fy+94yF8JZY4G/jgX+yLPvfYq/X694Zn52dnZ6eet/n/Pyc6kbi9iil3u12JUnquteWX59ACBmNR pIkzd+68E8P3jOWz+c93myf1+l0fE5xA dXDfuBNluWNdx2Tikbq0+lUkiSfG9qrv NpXVxTFfaBGo7GwkvfgPWN+zpa9uLg4O jrK5XKZTGaD/6w6HA5FUVz3tyAQSH0ZjdQXtp663a6fp 33hbq9Sn8971b7Wtbxn7MYrVF1cXBQKh fF4TAjp9/vZbHb+GFuv17vxkJtt27u7uz5HC8FSVX V5raCqqv/lJ3kCT335SXYbbjQa7o52u902DMN95g3 DME3zmtQJIZIkjUaj0WjkHuIbjUaKojh 78gvH7XzO2I2puyfYOubPiplMJtls9sb 1/Hg8Pjo68r4PUGJZ1sIOpLNLidQ3+MVrU 7/2UJyTuhOzE+loNHKqduJ1blmZunMoTtM 098eGYbTbbULIaDRatZ8Q1L66q1wuFwq FWq2WyWT8/O/0Xq+XzWbXmgQESNM0SZKcxcb9/tp76rrucd3CfD7/6aeffvLJJ973WfdDUMIXbOqKokhLnNTd Vb3zjWmaqqo6R9mcW9z+HbPUB4OB86bo aDSan9L8bvy6M7bZ2WytVqtcLnt/Os38ndl/+ZPNsiznLBpN0zz+sg+Hw1VXJnT88MMP Hhc2dLD/vx5COFvOSV1VVSdVRVFM03TWyu5anVxu 0ru/deUUGlmWl3e9nC2BVe+peM+Y/9FvLIRJQDhwCo3PJXkwGDib7qqqqqrab rcHg4GqqpqmaZo2nU4ty3J+NP+WudfZc u4f6el0uuqYvPeMhbB1ncvlNn6jDpiC1 KmutG44MVa9tNlhOeLjyNw2JpNJOp2m9 OAQMqQeZeo3unHGfvzxx/Pz8y2nsgo+jiZJkHq8U7dtWxRF553zYE 0mk0wmQ+ORIRJIPd6pE2rr3gA/rA5YgNRjn7pt2/l8PtiDZ51OJ5/PM/4/H2AtSD32qRNCxuNxLpcL6vjccDjM5XLY dE8YpJ6E1Mnlh0lu3+d4PM7n8+yfSgHr QuoJSZ0Q0ul01rrk0zLnjXp0nkhIPTmp k8steV3X193Ntm1b13VstycYUk9U6uQy WlEUa7Wan+Bt267VaqIobvAHAmIEqSct dcd4PC6Xy+l0ulgs1uv15W3yXq9Xr9eL xWI6nS6Xy1iZJx5ST2bqDtu2m82mc9lm 4apsNlsqlZrNJtbknEDqSU59mSBsOySI KaSO1IELSJ3p1JvNZrCfzYzUuYXUmU6d EBLsxVWQOreQOuupBwupcwupI3XgAlJH 6sAFpI7UgQtIHakDF5A6UgcuIHWkDlxA 6kgduJCY1LPZrL7CN998s+pH+XweqQMX kpG6bdvn5+erek6n02dnZ6t+Su+KCQSp AzuSkbo3qldA8cZcV0idW0idKua6Qurc QupUMdcVUucWUqeKua6QOreQOlXMdYXU uYXUqWKuK6TOLaROFXNdIXVuIXWqmOsK qXMLqVPFXFdInVtInSrmukLq3ELqVDHX FVLnFlKnirmukDq3kDpVzHWF1LmF1Kli riukzi2kThVzXSF1biF1qpjrCqlzC6lT xVxXSJ1bSJ0q5rpC6txC6lQx1xVS5xZS p4q5rpA6t5A6Vcx1hdS5hdSpYq4rpM4t pE4Vc10hdW4hdaqY6wqpcwupU8VcV0id W0idKua6QurcQupUMdcVUucWUqeKua6Q OreQOlXMdYXUuYXUqWKuK6TOLaROFXNd IXVuIXWqmOsKqXMLqVPFXFdInVtInSrm ukLq3ELqVDHXFVLnFlKnirmukDqfer3e 8fHx66+//uzZs6jHQhFSnxEEwQL+HB8fC4IgCML+/v6LFy+iHg4t7777LlJ/5aOPPsoDZ2RZTqVSTuqpVOr+/ftRj4iWjz/+2LbtSMpiLnXg04MHD/b393d2dm7fvj0ej6MeTgIhdWCCbdv1ev 3777+Pavs28ZA6ABeQOgAX/g9rEniAlGGEmwAAAABJRU5ErkJgggA=[/img]
    Find the percentage change in the reactive power supplied by the capacitor if the load voltage varies by 8.3%. Note that the percentage change in the reactive power is taken with respect to the initial reactive power supplied by the capacitor, that is:


    [img] gAAA2kAAABxCAIAAADAh3yaAAAgAElEQ VR4nO2duZW0OhCFSYo4SIIUCIEIiIAAF AA+zrOwsbFxcXnGPV2n/tLSAnphZu5nTfcArQ3pqlQqFTshhBBCC CF5FN9OACGEEEII+TFQOxJCCCGEkFyoH QkhhBBCSC7UjoQQQgghJBdqR0IIIYQQk gu1IyGEEEIIyYXakRBCCCGE5ELtSAghh BBCcqF2JIQQQgghuVA7EkIIIYSQXKgdC SGEEEJILtSOhBBCCCEkF2pHQgghhBCSC 7XjE6Zp6rquaZqmafq+X9f12yna13V1z iFJbduO4/jtFBFCCCHkr0DtGGVZlqZpyrLs+36e52 EYqqoqy3JZli+mqu/7oii6rhvHcZqmpmnw8YtJIoQQQsjfgdo xzLIsZVnWdb1tm3y5rmtRFGVZfiVJ27b VdV0UhTE0tm1bFMUwDF9JFSGEEEL+FNS OAZZlgUbUwhHAzjdN0+dTFdOI8zwXRVH X9eeTRAghhJC/BrVjgKB5D2DJ2Dn34SSN41gURVVV/r+2bSuKoihYlYQQQgh5OxQclmmaEgvTM P59XjtWVRWTs7CSUjsSQggh5ANQcFi6r iuKou/74H9hkvzwmrWoQ38NfX+YJLlmTQghhJA PQO1oSXg0Yq9MURQfjtQzDENCHULscqs 1IYQQQj4AtaMF2nGeZ/9fzjmj0rZte7rBeVkWrUS17XAcxyYJko HfbZrGf/i2bWVZBuVs27ZlWWKZe9u2o7bS9No9IY QQQv4m1I4Wox0lmiNUWlmWWqUhcnj6gY jFiL+dc23bHk0SVqVFO67rKgIUe3f8FX Zsvm7bFpLRORdbhU+A2ONH7yKEEELIL4 ba0QIjn3NuXdeqqqqqgmiDprx4iEtd1y cCMWKtHJusnXMSolw8HX0/SBw8cyWp+75XVcWwkYQQQgjRvEA7zvMc 3MPxQxH7Ytu2sLpBQfrC0TknRkcc8TJN U9/3TdNIgTRNg2uwPA2pd0KAynEyRVEsy+K cw64d/VsCjsMpyxI/3fe9pBPJkIMW5d51Xfu+xwmHsLlCsH73 EB1CCCGE3I2r2tEspx4CegUaCA+5yYHR OI0Q3n5QjXVdQ0WJ1+A8z23bwjK3rmvb tmKYHIYB+1qcc7BizvOMzMrfJ1LlnINr I5Ikvoz+A7EvG6bTaZpwI9KJAi/LEvIR4hhyua5rmFoRgWiaJjo7EkIIIcR wVTtCx8Q2l8SA2IIAatt2GAYtIi+uC7+ KbdvmeZZTradpquta/P+maYJPIaTbPM/QZ/u+932P9eVpmsZxFAUmWu0K8zzP84yNLN Cp/kYZbTIcxxH6fl3XdV0hK1HCMD3uD6Mmb JBSlS9J7XXmeU4snW/b1nWd6Pu+72NhjGQyID6ghBBCCDnBJe0 IUSJWw8y7cFQ0dniYkR5K6FuH/sWA7PAlMlQLdBvkGv6uqqrve0g3CBr8D ZPetm3XbauQrbGSh7LU6WyaBj+KG1HsE LsQx3gIbsReHCi2r6xZr+sKk61MJ4LB2 KUhNU0zDAOqqaoq06iw0I/C77oOt9CPkxBCCDnHJe2IfSQYjDNNjzL ex4yLkAvBw/e+BdadfQVTliW2pGzbNo4j0owTArGfGo ISq8Pyd9u2h2y0QeQcQhGvJsFaUEIqwY go6+kQkdh/LQbItm3ruu667r///oO4/0rYSKQNPgwJ7QixqFUgakrvKIca1s1JD iu/g3cEIYQQ8uM4rx1hdJznWaTVU9OjCMeE IpGnXRdYLyTopDiOI3wEdxUEBxY7sX51 XSe6B0avV51niIXy4L+guuSj3r4j6ZFd 5Nu2iekRm7ihMqGGv75XJqYdg2ft+MHb MRUxt0N0Mpo6IYQQcoLz2lGC10h46vS2 XIiq4KqiBoaimKmJpEEcctlG85UEpJeD p2k65JAQawyYY/i7eXA90iBS0ohs3Hsr2zYhhBDyUzipHa HwZEgWY2GOQTEta8STj9rxBDBtptX5W0 HDiDUD2KoPRSmPNQbYDn1TtzZsS1sKas cicj44IYQQQhKc1I6yuwJo02PQjUwueB r2RfbfUDueYxzH70oi1KAvH2PfpzmqHf X3Mf+He/pFEEIIIT+CM9pRYtPoL9OmR1GET6VDen uEMAyDO8KtNm7/enyZeE447tSOhBBCyM04ox2N0RGkTY+I 5lhkBN+RsCzpcR2xuPNhTJYPo8XiaeG4 UzsSQgghN+OwdgwaHQEC6QVVgoRITAdG kc0NPNHkFyBnDp0Wjju1IyGEEHIzDmvH oNERiPLzNaJox/TDY5EUP0BBMjhaqhKX+2K95GtHOeZ7p3 YkhBBC3sAxNQCjY2KjdMz0mKMdJYhPWZ bcAPsL+IrdEdcjRKXEe4ppx69HrySEEE J+HMe0Y9M0aRuSNj1q/Sf+jvKlnBYt18iInrOvhf6ON+fd/o6YpcS0I66X+OEx7XgiPYQQQsgf58DwC V34NOi0mB71eC/7rKELEb9af3M0NM/RfdZcnfwkH9hnLQ1GfylHNUp1w5Jtbkc ThW2SEEIIIYc4oB3F0pNGNkrrpWdZj67 rGjuycapy13VVVYkOOBQ1+kezbds0Tc6 5YRh+2crpZ+I7yr5+PSvAT2jTOEyMxjy JpsjpBCGEEHKCXO2oF6Pz0UO+HGaNkRu LyKIay7L8IyEYt21DDMu6rp1zsrfjd7h 4vupcGedc27Z6HtI0jbEf47fqusaX4zi igemGJJMW59y2beu6wn0itt+LEEIIIWl yteM4jof8C4FZFlzXtXlsmtH0fS/KaZqmdByfH82yLFVVlWWpbY1QVL9jCfV V51nHWpRxmRC9KNMS/+HLskCDypW6vRFCCCHkEF/YLrCu6zzPwzDM8wwHNTFPYiHyt2pH5M4 IRwBx88sWrz8DNl2N45huNsuyjOPIdWp CCCHkIl/eaoqgP2VZYkcLlia/m6T3gdXSoFku8S9CCCGEkPvwZe3ou1H+ VsuQqOTgf7EP6fMR0QkhhBBCDvH9EHfY yhDbTvtrgDqMbSLBmjXtjoQQQgi5Od/XjsuydF3X9/3v3mcNiRzMo0QlpL8jIYQQQm7O97XjHy GxIo991gh4KTzdMLRtGzcLE0IIIeTDUD t+CD+QteCHqnbOpc9+3Pe9aRpZAR+Gge vdhBBCCPkA1I4fAjupp2lCbHAJVYg44S Zc9rZtT9evl2URu2NVVb/YVZQQQggh94Ha8UPgEBQYC+u6RlBrnJh nNtDM8yxukYhKaL7c930cR4jLdV2HYcB DfusWdUIIIYTcB2rHzyEHMLZti2CWcg6 KeDcuy9I0jXyP877LshTFue/7MAxN0yCI+jzP+Ns5x602hBBCCHk31I4 fBWZCBEKvqgoWRyxh4wIc2Yw917A1Sug i5xwua9sWtkasWfd9/zvOMySEEELI/aF2/Bo42ht7aPQxzcMwyEaZZVmKooBVsq5rc Yus61pWuuu65kYZQgghhHwGasevAe3oR +epqgqr0rvSkRCRwzB0XYfDePA3YkMuy/LrA2QSQggh5A5QO36NZVmweG3CNNZ13T QNnBe7roN9EdqxqqplWdZ1hQfktm34u2 kaLlsTQggh5ANQO94OKEL8va6rKMtlWW Q3jP5+2zbusCaEEELIZ6B2JIQQQgghuV A7EkIIIYSQXKgdCSGEEEJILtSOhBBCCC EkF2pHQgghhBCSC7UjIYQQQgjJhdqREE IIIYTkQu1ICCGEEEJyoXYkhBBCCCG5UD sSQgghhJBcqB0JIYQQQkgu1I6EEEIIIS QXakdCCCGEEJILtSMhhBBCCMmF2pEQQg ghf46+78uyXNf12wk5xrIsbdv2fb9t2z iOTdP0fX/oCVVVdV13JQ3UjoQQQsg/bNvmPMZxTF8zz/O3EvxuxnH0C8SormmazAXfSm0OwzAURf HjqmwYhrqul2Wp67ooirqunXNHM7IsS1 mWV+QjtSMhhBDyD+M4Fh5t26avublauo JfGkVRLMuir4Ga0XwrtU+Z5zldX/dUluu6lmW5bdu+713XIYVt255QgWi9wz CcS8l9q/bdwNJrmr7P0wvedO/X6fu+aZpvp+LXsizLiYWGp6BVG+vIm2i a5q0t5JN5+RF8oD/BW/+jO67XIurQqEYB9puyLKdp+nDaPs+2ba IOg+u827a1bYviupvqMlRVJSJMmOfZOd e2bVmWyObdcrFtm7yeyAK+PPe0pmlOL9 kf0I7oVoJdOQbCn9XL55h5p2kqiuKcXR fPPy3qv07TNHeeNf50MOt9ufZCq/uM8ePddoVP5uX+oMFcdFF6Ct76T46X27 b1fV9VVV3XRn5BiLw7y2nWdUU7j72qGC PupjDeB1pIQjtWVRXT2fcBUwK/b3HOVVXVNA1Meneu2WVZElOaTFAO516x A10/Gk1QpT41/wZZ1/Vjli1/Mv1u7QiL99e14ziOT41bkP7mS2rHF+Kc M7VA7fgUPy++w9nf4bdqR9ix2rat6xpG FAEWrBcaQU/aV+LaEVLpu+r2w/R9nxBVzjnfmHdDqqqKyV+A1+2e2nEcx2 3btMDALOvc02A1P3HjYe0YfIvOaUdk/tAt5whODTPdS3/6mnXbtk8FSrAiqB1fCOay+htqx6f4eSn L8i+bIT/Qn3xYO2qzh+mlXz73nuf53BgJnRFs6ti le3+p9ELwVhZF4a/RwxL2dXPJU5DOuq4T19xWO+I1GYYBryp qoeu60x0jZmgnPC6OaUdIVL99xLTjuq7 YnDWOo9H467pixjk/0G+g3DhN08U3UzwwhmHADyElWjvO8zwM g5/Ibdvkep3ZYRiQtsTEZV1Xk6n94U6ReS/+XpYlmDYBF2CLn/9zeEmkkIO/hc7RVITWjkh2oi6wvS6RyGCCx3H0h0Pk HVk2/0V1IA3BYsGNsXRu24Z0ZjYq/BzaYbDoJCPTNCXGdVMLuFJrR2ntsX4q/3WIaUdpeLGfkMwOwxDLCx4yDAPKPDag4 lHBh5hGiCvxTD9hJi/42HWdLkYgbSaWeF3CGn0NajORffkhv5H 7WV6WRd4av+uTn17XVfqlWBtDmzd9kf6 4risadvAJutnrvAcbkmjHYJPLz76ffnM xkoqeGQ/U2vEl63E+57wSxWhivkci/5ohHNUU7GTe7QD9KtCTpJfj7qwdy7KEY wD8MpumufKmYJJ2wvP+sN0RTcesXAe1o xi3BUkf3jqDVJLMbEBZllfeT3F6FZBO8 Uc0F+hC9PPl7yOLFbqxa2J7lLk3NkXDv dM0yZQXmMUR7bnslxXahMH8UKIiUN3+R kJTF8uymESmWyFGC41u99JNB7Ms1WFyD ZWpi9dvM+M4pi/wq8DUV13Xegj0MxLsN2OXiXYUxxr5FTM 2m/eoLMuEuPG1o19B/ghq3jgkzMzlTJnDR60IaUc0qqqqzPfoO mS6j07Q5F1nTeclUdqmAP3E+x2RgAu2b TMNzzzBZMGvaG0/88uq+PetQb4kxAYeiML0J0u4AKKtUDUr H032q6rS7cc0e01wUEQ5mK5DXpZY9nF9 cOkW/9INEgnGW19VlbQT6TCxEFxV1cvteV3Xn RA3Mde3uq5/hFR6LSKqTD+Pir7DUttTxJaUuOa22nF/zITxd9oIlcN8dgXssHbcH0Wvh3xfY6G/rqpqHEfYM9A5osFh6hm0O6IJIvLQOI54 b69E75znGQ8J2h1RatM0TdPUdR36WWku Jl8YIdq2xQwe+0BjE1mjHZGGvu9xL0I0 xTKVkzYRjtjRBiMH7sILLONNwu6YqAgZ TfH8cRxl/JZkiyBu2xaVhY8x+7mkR1pF27b6HYaWQ hFhPUiPu/I+4wnTNEmSMP2apgmVgm/ksTJX1o0q3S8457D9C5WlW++u3jedkWC uYXcpInZHpBMtE27a5s1CnZZl2fe9zlq 65UhKtm1DGYq5Di+meYJsg9OZ1fViWpp WY8FkSIvSX6LYUZvIPtag8UxUpVYMOi8 wChYhuyMEgSTeLIzID8FJaJ5naVRSAhI mDXZHZD/WmeJ2U/54gnQFVVXhTcebi4Iy+ZJfGccR5l5ffk mHs3t9UaL9yEOk9hGHb9s26YViY7x563 WvgiwHHcWCwlenQV5GZFOmYbqcxd9R3B y3bXtt0OZzi6pSAro9IyN3jikdjE+ZJk cnBTcPoZZ/ij9JjmPGnbXjaxH70dEbz2hH6ZKkrzT9 GpqXcQQRnSFfBj3qcI3uhq5sBQIu5Noo Pbj+En2rP7lPJDjzR/3fenqvGb1M2tB5GWM1vtQ3JkZBIZgvfG mKXVa3dZJ0X4yGGPMrwqiQ/zYGq8O0KwzbpmzNa2+Svf87KudgLC5HM +LXQrBvEo2LjzA7mfymF1yMdoTIMxfL4 m8stSgcSTA+GvcgGVATT9A/IRoCeUEBGtOvsQeYvAQXN3zMK+AXl7GE mcyChBhCkepkoLtLvN1GSQe1SLCuxfbv Z1/aj06kvCD4aAy9ktREh4BfNBfoBhM0bPv NQ4MSg7gv/p23YMonD+m6TlbQZFqYmGOfAM8/tJAlVlhpmRjLEk0RS0Zt25oR8HSy9UOw NPx0NHmTdtxDm4fatg3aiY8KL/hXPL0s87GyNmJmCzmi8O9ox/2s5/oZ7bg/eiXp6Uy/FltBhxSQxuFLlqD5FL1qvvDySWhH06rM 1v2gdmzbNqcXMD+K8cM5l7MQk5M27Sqr Me3gonY0hYZhQBJmJgMgsYUN+YIFLp0k gGZmqsMIPn8wM4nHeGnGNlkNzEkG8BVJ/qgW045+q9apmkNba4PviGBKI1gXIlNiq cUFZlHYtEYxPySeoJWQUZPBBEBAmEI+q h2NPHIP9w+5wBRg0FXctHP/+brigi3Qf5rRjrHuUWSNzMCD2RdjtnkI Xkn8jTI3P5SjHU1p6DfIz36irPTtiEVn PC7gsIVFGNiG8YLLxDUt9WDUP8qhbnxX MkIKH1Ipdr0048KbolwXIghplNOrvw+z eQjl42cNvfchmY5RUteL80Ir5D8W8UP8 tCHx6do/pB3FhTeHG9qqP6od939Xrk2/FutMzYw/ph0xGdXE8rauq542xdpTQjuaL4MdtHzU rmNYuU4Ul3m+dsjDulv+vcHEICW+EjVv y0XtGEyYpAHZMZVl1tY12kGzCQUERYXK xNp02UH18FQ7Hm1UktRhGDCM6TRnZsTg 10JMAupUiWncT3mmdozl0VQudmzEMhtb 4kkXoFFCvpoPZqE4rh2ReNNmjNFU628j hZEw+K4JeE5MDho7oi/Q53mGG4C8DoWnHf3yNHLQzMCDXZNfhrp mjfrcI7Mv//Z0XRu1HeuINLJw7+sA3A4fXLg5mo0yRc RGLtO/K2Tu7cPFSNLTgI5SvzrZy7K86iCA2Ivw MUznGQvoiM780JPN/kg0YFNusKceSqr5Mt1xgUPaUVYScni62 HW9VcdI/+LTbNq78i811aBXroPa0R9QjRkpph39w RL4SZIKBukB9bp23B8NVw9RsU7Tfz7u1 QoyeGNm2mL1/WHt6GsykHCaHsdRBAqGCvleSrXve/fYB/Am7RhrVLsS+gjehpmJKUkcQi8tQWfEx6 +FK9qxiR9Ic0I7yp6Vuq6DmT2nHbUSMs aqWN7349pRJx5txiReXGVwAVqUXl8Lak cQmxJoPWpspftDJ6G9IT2mAGPacf93rR zviDSqE9pRJ6brOnEgTgyHOXXtB9Z5Oh wGHUsE5FHcHCGaoU0hEF+rk6RXyd+Lo3 v7p7Gvgz3nC0m0n88g7gTzPGNEe5MtTb eEcyT62PS2nkPa8aeT7smjd+Vf6r8Ssn JtRGHM7mi+j2nHfC80YyuOtYYXakedd1 mGzv9RIJrjkKHUJCbWy5sh593a8XQvKQ sKqG6xIugyyamOTO34tBA0Zs8BiD1kfq yCJSYD57Rj7PCDBKY0gk4F+yOD+hqdeG MXPKcdd2WQc54PRhFabzVr5Tna0TcQmo fsavJQPPSx71N4aISQafPumVfFY9Wsu2 VqR7E1+o4W57QjtA6yX5bl05PiMuta2p VxQwoi+jVRzjqaI6SJzuYL4+BAQB8VBM g+fBwTAR2xPREhVPR4ZGJ4wYiAh8BqLn GvNJid+t9nalPxjMwns5zFzBY7EBkp9+ 0msuyAOZW+AF9KwcIboXns+pcrsUXST9 I0TcMwmM1VmNf5/efTGdRO7ZhzV/6lwSaL97z517cjFsrBrPXgLl3ZQYfx6z jP52m/rB33Zz7y6dlhWiXnpC3hhaZXqRIpFPyK 2PO0o78H5RAysO0R/78c9fBUO4oqPWpm0AUSa9KC9jMLPtBIp RztGAt2k8CURtCZz6yN+oVjMutC/nk5u/NEMvpuTEFHTLO+HKx9X9CnE78/Tn2NTSz9vS85iGYypzK40D6kfLuj+Hb7 SzdX7I75O4txu6lrv0hl+4vJvo9sXfIN tIJZpG6aRp6J9L/KrIVCuxLiMV2YzcPlA2sFKEbnHLw5pQU 2TYM2KeGKilDoAyx64LRGPVKkOyLhxF6 ZzAg7OoRTcI+UexwJrV1WmoezDRqY2RQ La65swIfLR/Gw3+OFgl+NCa8GRzKcXYleReoX6fRftJ zp4t/RjuntrQmuakeZgpv+t1E7BIHz9jXLrEI/EC+SsQ3oaLonCHboJ7SjicyMoS5TO/rhBi9qR6yr6i5JnPB0RfgyyMevrD1PO7 rHlhEzq471ziYYldlvYYxksnB8UTvujx HIBGhMNCoTckUKVrpsk5GnQsqXODnaUT JiXgdMyoM/ZEoDZahj/kle5L0zEwA/szIh0S1NRtNYlnc1ufKburR/v7qNxjK1b/o4Y2UXj2RdsEhDbHVC6s5/QxNZE1lfhCLCSp+A8dsMQulZpayqBxvM Ue0or7ZkP5EpuV7XtXiY6AKRJlEk47lC dIqHQHDM9qM5ItTXHjIhX6Q5G0VZWvvT xMixH/gIlwltyJ/nGa1Rtzqzm0p/NFOmtDnjM0jii9DKL7IMYdA8NtFjjChU cFkt7JxziEGmi0623stj0UjKshTBik5D KsUcYqkN2JqcCdWttGPQLL0si4vs8Uic FOBzYl0OXNWOeyTQvIxAmIHJuokffKd4 bLaQqIToksRBLe23noO0A/QdKO4T2hETYkyDxGMvc91ZcoTZVbpd5q TN5Kt5eOUHQ1hjuSrWPmQeiWtQETnacV fB0pEGIzsMMvVETD7cKGOPhB6U/77E33FXBk6TzlijkpaJ6Sx6K32uoGRE9 oSmB1EZkqUWMrWjKKrM18EvDXk9TSORC 3TtY1oPM4lOm+x1kIdAkgY7BI24RvnTC fcIXSk2ieLfCZ6fF+lG2rZFaaOm8A1+y 2+BfvBwU1kSrlK8HtNWZJ2Ywhs+8T1sI ZKpIls7yksd3F9/VDv6sf1xV2wy2Ty8PwsVsbwImZekymLG Kn9yGwyH5B9aLWZOf1/2FSDgzjnPSQt5mhj3CPyOj+OD4jFSIAa t2T+O5+MuE/PIKKp04/kM0kSDPd48z8ijNFd8E8wyMoLYq/qQod2LpuQ/dvfCAqDdSkpMJyYkQtkjhm6jtrgV/+qTT4KwwcEVdpRe13UYnrQIwTcw3GKWk v6V4LJSDge0I1KT+JdRUfCGkZ606zq/w3KPfSe6bjBZ16Kk67qLNSezZ4SV3h+t xDdC6IyYj7hFj+WJnsg83z1c5mWoS1Rq TtrAPM/SvOq6dp4DOGoBvXBibiEVIUbEYHUjYb6 FRrKG5ZWE3RHhLaRm9eTPJBUdRKI6Ekl C4n0fI2lU8HuLNSoEwpCW2fc9bpcXzM9 I2kyFnlHXAvLiv7Hop/Q367r2fa9fB/jDBX8oWBrzPMsTTJnv/76nkqS+703a5A1C68W+0USLkp9u4sYex GmXnzbNxs/LsiwSQlxOGfATj30huEWWO2QnjdSs2Rk t7xEmCU/XeZE8fwTSiUSmYKbVeiI9FAUjqwe7Jr/96EqBiQuTMVmXbP71L/JvR2uXRcNgr7JHon5qJGa7/hJzJ3kamoc/cDjn0Myu7JMwQMueuzc4QQ0SnHKjQv0p vXwDy2vwt8zEI/j8z1P8u+HMxwhB/xu0TPmvH3sh6K6gH2KckYyVGhI8KIkSz maiHX2+oh2dt9Nu9/w4oSNRJiYUVJMRB9SfvGXy/VZICCHvAIOEr1yvHzfwPp5GGs8nGD3ne rhccNST8kcD/5Ych2m4J5p7i4fbiQzq+jJZlcavGFua9 gjfH86O+lFfYU7GKRQZp/2XsFKBv2U9Wi4QK6O4A4mexs6bXb3Osh dHz15kwy78UmSPtvE0A8bX5c74lmbzjV 6RMJbXp1bqK70BtSMh5HfiH6YM0KWec3 17N6/SZGZkNd9ftF2Jm/trNzX+dDASBx3rp2mStRQTtlA2HsHEq1 e9ZYMRNKWoBL0GckNECMLnZ/ecF6VMcBDo/jiREh5ryLtcD6u5eSyy7zs7IkqoHFeLh hqzmt+5DAVf/xlLpHZfKf71CI91gEJsp3wO1I6EkN+J7 NUQoxEsFhBPL1wPfRXo618SaEIHvRIT0 fw4vP6KzRXBX25ruP0iGMXNSCy7Z6Ra0 QKl+WG2AHedbdvE3xHb2IuHGy7iZkMKv PacxpeD+APIkV5LFecEOdZcygSeJ9pjB x/h+YBv4HXgVERJCETx7ZNi1P+KCUQsmt9/8nNUO+p1/6c7q8w2tUNQOxJCfi3BjTKZvmufRKftV eEMgxtlCm/bfj56g63Zk0d2b6OMYDxcYRWT0lvXtes 6+BDLN9j7ta4r3Ge1kfIrvndHQbJ1AAT d6nBql4kKhND9+pq+7xG1MfZYec74OPN dnolSTVgWjSn0thzVjnoBOq0dxfp7LmH UjoSQ3wyCWWB4xjBzQ9EjYUpemzaEnob gcM4Fg30cehpK8v7a5cPAxw7brb6dFpK LMQDfk6PaUbujJLTj9WBP1I6EEELISeC lhzBe97djEQ0cA244mRSuaEdz4J9GQlW chtqREEIIOQ/c7HT4IUJegq8dTdgmaEcIQRNz13nHU70 QakdCCCHkElSN5B342jG48Qgr78bjVjZ gvdNg2kYAAACtSURBVCNh1I6EEEIIITd Cn0WCJWYT9BtHFmFLO76XMxtxLOH7jI4 7tSMhhBBCyK3AuTKIgo6gnvqUXRw507a tiQmFDeb411u3AVE7EkIIIYSQXKgdCSG EEEJILtSOhBBCCCEkF2pHQgghhBCSC7U jIYQQQgjJhdqREEIIIYTkQu1ICCGEEEJ yoXYkhBBCCCG5UDsSQgghhJBcqB0JIYQ QQkgu1I6EEEIIISSX/wESyrmOzaxO7wAAAABJRU5ErkJgggA=[/img]
    Not enough information to provide an answer.
 
 
 
  • See more of what you like on The Student Room

    You can personalise what you see on TSR. Tell us a little about yourself to get started.

  • Poll
    What newspaper do you read/prefer?
  • See more of what you like on The Student Room

    You can personalise what you see on TSR. Tell us a little about yourself to get started.

  • The Student Room, Get Revising and Marked by Teachers are trading names of The Student Room Group Ltd.

    Register Number: 04666380 (England and Wales), VAT No. 806 8067 22 Registered Office: International House, Queens Road, Brighton, BN1 3XE

    Quick reply
    Reputation gems: You get these gems as you gain rep from other members for making good contributions and giving helpful advice.