This discussion is now closed.
\textsl{A} : \Re^n \to \Re^n
\prod_{k=1,..,\bar{K},...,r} (\textsl{A} - \lambda_k )
= \sum_{j=1}^m_{\lambda_K} ( \prod_{k=1,..,\bar{K},...,r} c_{Kj} (\lambda_K - \lambda_k)) v_{Kj}
\textsl{A} : \Re^n \to \Re^n
\prod_{k=1,..,\bar{K},...,r} (\textsl{A} - \lambda_k )
= \sum_{j=1}^m_{\lambda_K} ( \prod_{k=1,..,\bar{K},...,r} c_{Kj} (\lambda_K - \lambda_k)) v_{Kj}
\displaystyle \prod (\textsl{A} - \lambda_k ) \left( \sum_{i=1}^r \sum_{j=1}^{m_{\lambda_i}} c_{ij} v_{ij} \right) = 0
\displaystyle \sum_{i=1}^r \sum_{j=1}^{m_{\lambda_i}} \left\{ c_{ij} \left[ \prod (\textsl{A} - \lambda_k ) \right] (v_{ij}) \right\} = 0
Spoiler
Last reply 2 weeks ago
STEP 2 in 2024: Sharing Your Story! [PLUS WITH SOME SOLUTIONS AND PREDICTION]22
87
Last reply 1 month ago
Gcse maths help i'm doing foundation and keep getting entered am not sure if passing2
11