# Isaac Physics

Watch
Announcements

Page 1 of 1

Go to first unread

Skip to page:

A 2.400×10^22kg moon orbits a 7.200×10^24kg planet with an orbital radius of 2.500×10^8m. Calculate the gravitational potential at the point half way between the centres of the planet and its moon. You should take the Universal gravitational constant to be 𝐺=6.674×10^−11Nm^2kg^−2. [Note: more significant figures are used in this question than appear in earlier printings of the book.]

0

reply

Report

#2

The potential at the midpoint = Potential due to moon + Potential due to planet

Last edited by BobbJo; 1 year ago

0

reply

(Original post by

The potential at the midpoint = Potential due to moon + Potential due to planet

**BobbJo**)The potential at the midpoint = Potential due to moon + Potential due to planet

0

reply

Report

#4

(Original post by

I got like 1.929x10^6 but its wrong

**Kimberley_P**)I got like 1.929x10^6 but its wrong

Potential varies inversely as distance so the formula is

make sure to use correct formula

0

reply

i did ((-2.4x10^22*6.674x10^-11)/2.5x10^8)+((--7.2x10^24*6.674x10^-11)/(2.5x10^8/2))

==-3.848x10^6 but still its wrong. so could you help me please???

==-3.848x10^6 but still its wrong. so could you help me please???

0

reply

Report

#6

(Original post by

i did ((-2.4x10^22*6.674x10^-11)/2.5x10^8)+((--7.2x10^24*6.674x10^-11)/(2.5x10^8/2))

==-3.848x10^6 but still its wrong. so could you help me please???

**Kimberley_P**)i did ((-2.4x10^22*6.674x10^-11)/2.5x10^8)+((--7.2x10^24*6.674x10^-11)/(2.5x10^8/2))

==-3.848x10^6 but still its wrong. so could you help me please???

0

reply

(Original post by

first one should be 1.25 x 10^8 in the denominator

**BobbJo**)first one should be 1.25 x 10^8 in the denominator

0

reply

HI, I have another question related to this which I can't solve

Calculate the gravitational potential at a point 6.800×10^8m from the centre of the planet in question F5.16 on the same side of the planet as its moon. You should take the Universal gravitational constant to be 𝐺=6.674×10^−11Nm^2kg^−2. [Note: more significant figures are used in this question than appear in earlier printings of the book.]

F5.16 A 2.400×10^22 kg moon orbits a 7.200×10^24 planet with an orbital radius of 2.500×10^8m. Calculate the gravitational potential at the point half way between the centres of the planet and its moon. You should take the Universal gravitational constant to be 𝐺=6.674×10^−11Nm^2kg^−2. [Note: more significant figures are used in this question than appear in earlier printings of the book.]

=-3.857x10^6 J/kg

Calculate the gravitational potential at a point 6.800×10^8m from the centre of the planet in question F5.16 on the same side of the planet as its moon. You should take the Universal gravitational constant to be 𝐺=6.674×10^−11Nm^2kg^−2. [Note: more significant figures are used in this question than appear in earlier printings of the book.]

F5.16 A 2.400×10^22 kg moon orbits a 7.200×10^24 planet with an orbital radius of 2.500×10^8m. Calculate the gravitational potential at the point half way between the centres of the planet and its moon. You should take the Universal gravitational constant to be 𝐺=6.674×10^−11Nm^2kg^−2. [Note: more significant figures are used in this question than appear in earlier printings of the book.]

=-3.857x10^6 J/kg

0

reply

Report

#9

(Original post by

HI, I have another question related to this which I can't solve

Calculate the gravitational potential at a point 6.800×10^8m from the centre of the planet in question F5.16 on the same side of the planet as its moon. You should take the Universal gravitational constant to be 𝐺=6.674×10^−11Nm^2kg^−2. [Note: more significant figures are used in this question than appear in earlier printings of the book.]

F5.16 A 2.400×10^22 kg moon orbits a 7.200×10^24 planet with an orbital radius of 2.500×10^8m. Calculate the gravitational potential at the point half way between the centres of the planet and its moon. You should take the Universal gravitational constant to be 𝐺=6.674×10^−11Nm^2kg^−2. [Note: more significant figures are used in this question than appear in earlier printings of the book.]

=-3.857x10^6 J/kg

**Kimberley_P**)HI, I have another question related to this which I can't solve

Calculate the gravitational potential at a point 6.800×10^8m from the centre of the planet in question F5.16 on the same side of the planet as its moon. You should take the Universal gravitational constant to be 𝐺=6.674×10^−11Nm^2kg^−2. [Note: more significant figures are used in this question than appear in earlier printings of the book.]

F5.16 A 2.400×10^22 kg moon orbits a 7.200×10^24 planet with an orbital radius of 2.500×10^8m. Calculate the gravitational potential at the point half way between the centres of the planet and its moon. You should take the Universal gravitational constant to be 𝐺=6.674×10^−11Nm^2kg^−2. [Note: more significant figures are used in this question than appear in earlier printings of the book.]

=-3.857x10^6 J/kg

the gravitational potential at a point 6.800×10^8m from the centre of the planet in question F5.16 on the same side of the planet as its moon = gravitational potential due to planet at a point 6.8 x 10^8m from its centre + gravitational potential due to moon at a point (6.8 - 2.5) x10^8 m from its centre

the gravitational potential at a point 6.800×10^8m from the centre of the planet in question F5.16 on the same side of the planet as its moon = gravitational potential due to planet at a point 6.8 x 10^8m from its centre + gravitational potential due to moon at a point 4.3 x10^8 m from its centre

0

reply

(Original post by

draw a diagram to show the relative positions, then the distances to use are clearer

the gravitational potential at a point 6.800×10^8m from the centre of the planet in question F5.16 on the same side of the planet as its moon = gravitational potential due to planet at a point 6.8 x 10^8m from its centre + gravitational potential due to moon at a point (6.8 - 2.5) x10^8 m from its centre

the gravitational potential at a point 6.800×10^8m from the centre of the planet in question F5.16 on the same side of the planet as its moon = gravitational potential due to planet at a point 6.8 x 10^8m from its centre + gravitational potential due to moon at a point 4.3 x10^8 m from its centre

**BobbJo**)draw a diagram to show the relative positions, then the distances to use are clearer

the gravitational potential at a point 6.800×10^8m from the centre of the planet in question F5.16 on the same side of the planet as its moon = gravitational potential due to planet at a point 6.8 x 10^8m from its centre + gravitational potential due to moon at a point (6.8 - 2.5) x10^8 m from its centre

the gravitational potential at a point 6.800×10^8m from the centre of the planet in question F5.16 on the same side of the planet as its moon = gravitational potential due to planet at a point 6.8 x 10^8m from its centre + gravitational potential due to moon at a point 4.3 x10^8 m from its centre

0

reply

X

Page 1 of 1

Go to first unread

Skip to page:

### Quick Reply

Back

to top

to top