This discussion is now closed.
log_3(x) - 2log_x(3) = 1
log_3(x) - 2log_3(3)/log_3(x) = 1
(log_3(x))^2 - 2 = log_3(x)
(log_3(x))^2 - log_3(x) - 2 = 0
That's a quadratic equation. Let y = log_3(x), so:
y^2 - y - 2 = 0
(y - 2)(y + 1) = 0
Therefore y = 2 or y = -1
So, log_3(x) = 2 or log_3(x) = -1
So, x = 3^2 or 3^(-1)
= 9 or 1/3
log_3(2 - 3x) = log_9(6x^2 - 19x + 2)
9^(log_3(2 - 3x)) = 6x^2 - 19x + 2
(3^(log_3(2 - 3x)))^2 = 6x^2 - 19x + 2
(2 - 3x)^2 = 6x^2 - 19x + 2
9x^2 - 12x + 4 = 6x^2 - 19x + 2
3x^2 + 7x + 2 = 0
(3x + 1)(x + 2) = 0
So x = -1/3 or x = -2
Let y = 2^x, so:
2y^2 = 3y - 1
(2y - 1)(y - 1) = 0
Therefore y = 1/2 or y = 1
So x = log_2(1/2) or x = log_2(1)
So x = -1 or x = 0
log_x(y) + log_y(x) = 5/2
Using change of base rule:
log_x(y) + log_x(x)/log_x(y) = 5/2
(log_x(y))^2 + 1 = 5/2log_x(y)
That's a quadratic equation. Let z = log_x(y), so:
z^2 - (5/2)z + 1 = 0
(z - 5/4)^2 - 9/16 = 0
z = +/-3/4 + 5/4
So z = 2 or z = 1/2
So, log_x(y) = 2 or log_x(y) = 1/2
We have xy = 64, so y = 64/x:
So, log_x(64/x) = 2 or log_x(64/x) = 1/2
So, log_x(64) - log_x(x) = 2 or log_x(64) - log_x(x) = 1/2
So, log_x(64) = 3 or log_x(64) = 3/2
So, ln(64)/ln(x) = 3 or ln(64)/ln(x) = 3/2
So, ln(x) = ln(64)/3 or ln(x) = (2/3)ln(64)
So, x = 4 or x = 16
xy = 64, so when x = 4, y = 64/4 = 16 and when x = 16, y = 64/16 = 4
Well from that we have:
a^x = (ab)^(xy)
ln(a^x) = ln((ab)^(xy))
xln(a) = (xy)ln(ab)
y = ln(a)/ln(ab)
We also have:
b^y = (ab)^(xy)
ln(b^y) = ln((ab)^(xy))
yln(b) = (xy)ln(ab)
x = ln(b)/ln(ab)
Therefore:
x + y = ln(b)/ln(ab) + ln(a)/ln(ab) = (ln(a) + ln(b))/ln(ab) = ln(ab)/ln(ab) = 1
Q.E.D.