The vector diagram is labelled in standard notation for a triangle with sides a,b,c and opposite angles A,B,C.
Vector-wise,
c = a + b
Cross Products
axb = |a||b|sinC.n -> sinC = axb/(|a||b|.n)
bxc = |b||c|sinA.n -> sinA = bxc/(|b||c|.n)
cxa = |c||a|sinB.n -> sinB = cxa/(|c||a|.n)
bxc = bx(a+b) = bxa + bxb = -axb (bxb = 0)
cxa = (a+b)xa = axa + bxa = -axb (bxb = 0)
|a|/sinA = |a||b||c|.n / (bxc) = |a||b||c|.n / (-axb)
|b|/sinB = |b||c||a|.n / (cxa) = |a||b||c|.n / (-axb)
i.e. |a|/sinA = |b|/sinB etc.
==================