so (1) tells us that 1+cos(2pi/n)+isin(2pi/n)+.....+cos(2(n-1)pi/n)+isin(2(n-1)pi/n)=0 for this to be true need the real part of both sides equal that is 1+cos(2pi/n)+cos(4pi/n)......+cos(2(n-1)pi/n)=0 and the imaginary parts of both sides to be equal sin(2pi/n)+sin(4pi/n)+.......sin(2(n-1)pi/n)=0