12.
The three points are,
P(ap²,2ap), Q(aq²,2aq), R(apq,a(p+q))
The area of a triangle ABC, with coords A(x1,y1), B(x2,y2), C(x3,y3) is given by,
2A = x1(y3 - y2) + x2(y1 - y3) + x3(y2 - y1)
Puting,
(x1,y1), = (ap²,2ap),
(x2,y2), = (aq²,2aq),
(x3,y3), = (apq,a(p+q)),
and substituting into the expression for 2A,
2A = ap²(a(p+q) - 2aq) + aq²(2ap - a(p+q)) + apq(2aq - 2ap)
2A = a²p²(p - q) + a²q²(p - q) + 2a²pq(q - p)
2A = a²(p-q)(p² - 2pq + q²)
2A = a²(p-q)(p-q)²
2A = a²(p-q)³
A = ½a²|p-q|³ - considering the area to be +ve only
===========