The Student Room Group
Reply 1
ThugzMansion7
solve 2sin2x = tanx

between 0 \< x \< 360


2sin2x = 2[2sinxcosx] = 4sinxcosx = tanx
4sinxcosx = sinx/cosx
4sinx(cosx)^2 = sinx
4sinx(cosx)^2 - sinx = 0
sinx[4(cosx)^2 - 1] = 0
sinx=0 or 4(cosx)^2 = 1
sinx=0 or cosx = 1/2
x=0, 180, 360, 60, 300.
Reply 2
sinx=0 or 4(cosx)^2 = 1
sinx=0 or cosx = 1/2 or cosx = -1/2
Reply 3
Gaz031
2sin2x = 2[2sinxcosx] = 4sinxcosx = tanx
4sinxcosx = sinx/cosx
4sinx(cosx)^2 = sinx
4sinx(cosx)^2 - sinx = 0
sinx[4(cosx)^2 - 1] = 0
sinx=0 or 4(cosx)^2 = 1
sinx=0 or cosx = 1/2
x=0, 180, 360, 60, 300.

:wink: cheers
Reply 4
what about:

using cos(A + B) to prove cos2A &#8801; 2cos^2 + 1

if someone could point me in the right direction...
Reply 5
use sin^2(A) + cos^2(A) = 1
ThugzMansion7
what about:

using cos(A + B) to prove cos2A &#8801; 2cos^2 + 1

if someone could point me in the right direction...

cos2A = cos(A + A) = cosAcosA - sinAsinA = cos^2A - sin^2A = cos^2A - (1 - cos^2A) = 2cos^2A - 1