1. Differentiate with respect to x: (a) sinx/x (b) ln (1/x^2 + 9)
2. Given that y = cos2x + sinx, 0 < x < 2pi, (a) find, in terms of pi, the values of x for which y = 0 (b) find, to 2 decimal places the values of x for which dy/dx = 0
3. Given that 2x^2 + 6x + 5 = P(x + Q)^2 + R, find the values of P, Q, R
1.) a.) Let y = sinx/x Let u = sinx --> du/dx = cosx Let v = x --> dv/dx = 1 d/dx [sinx/x] = dy/dx = [v(du/dx) - u(dv/dx)]/v^2 --> d/dx [sinx/x] = (xcosx - sinx)/(x^2)
b.) Let y = ln[1/(x^2 + 9)] Let u = 1/(x^2 + 9) --> u = (x^2 + 9)^(-1) Let z = x^2 + 9 --> dz/dx = 2x Hence: u = 1/z = z^-1 --> du/dz = -z^-2 = -1/z^2 Hence: du/dx = du/dz * dz/dx = -1/(x^2 + 9)^2 * 2x = -2x/(x^2 + 9)^2 y = lnu --> dy/du = 1/u Hence: d/dx [ln{1/(x^2 + 9)] = dy/dx = dy/du * du/dx = (x^2 + 9) * [-2x/(x^2 + 9)^2] --> d/dx [ln{1/(x^2 + 9)] = -2x/(x^2 + 9)
2.) a.) For y = 0: --> 0 = cos2x + sinx --> 0 = 1 - 2sin^2x + sinx --> 2sin^2x - sinx - 1 = 0 --> (2sinx + 1)(sinx - 1) = 0 --> sinx = -1/2, sinx = 1 In the required interval: --> When sinx = -1/2: x = 7Pi/6, 11Pi/6. --> When sinx = 1: x = Pi/2. Hence for y = 0: x = Pi/2, 7Pi/6, 11Pi/6 (Rads)
b.) y = cos2x + sinx --> dy/dx = cosx - 2sin2x When dy/dx = 0: --> 2sin2x = cosx --> 2(2sinxcosx) = cosx --> 4sinxcosx - cosx = 0 --> cosx(4sinx - 1) = 0 --> cosx = 0, sinx = 1/4. In the required interval: --> cosx = 0: x = Pi/2, 3Pi/2. --> sinx = 1/4: x = 0.25, 2.89 Hence for dy/dx = 0: x = 0.25, 1.57, 2.89, 4.71 (Rads)