The Student Room Group

leibnitz theorm

How do i differentiate n times using Leibnitz Theorem:

(1-x^2)y'' - xy' - y = 0

Reply 1

Leibnitz's Theorem
(d/dx)^n (uv) = (sum from i = 0 to n) nCi u^(i) v^(n - i)

where u^(i) means the ith derivative of u wrt x, etc.

--

(d/dx)^n [(1 - x^2)y'']
= (1 - x^2) y^(n + 2) + n (-2x) y^(n + 1) + nC2 (-2) y^(n)
= (1 - x^2) y^(n + 2) - 2nx y^(n + 1) - n(n - 1) y^(n)

(d/dx)^n (xy') = x y^(n + 1) + n y^(n)

(d/dx)^n y = y^(n)

Combining those three derivatives,

(d/dx)^n [(1 - x^2)y'' - xy' - y]
= (1 - x^2) y^(n + 2) - 2nx y^(n + 1) - n(n - 1) y^(n)
= - x y^(n + 1) - n y^(n)
= - y^(n)
= (1 - x^2) y^(n + 2) - (2n + 1)x y^(n + 1) - (n^2 + 1) y^(n)

Reply 2

why is it y^(n+2)

Reply 3

(1 - x^2) y^(n + 2)

is

nC0 . . . . . ie, 1
*
zeroth derivative of (1 - x^2) . . . . . ie, (1 - x^2)
*
nth derivative of y'' . . . . . ie, (n + 2)th derivative of y . . . . . ie, y^(n + 2)

Reply 4

thanx :smile: