This discussion is now closed.
Scroll to see replies
\fontsize{3} E_{o}
\fontsize{3} E_{\gamma}
\fontsize{3} \Delta = E_{o} - E_{\gamma}
\fontsize{3} \Delta = E_{o^{2}} \div 2(Mc^{2} + E_{o} )
\fontsize{3} Mc^{2} = E_{A} + E_{\gamma}
\fontsize{3} E_{A}
\fontsize{3} E_{A}^{2} - (pc)^{2} = (mc^{2})^{2}
\fontsize{3} E_{\gamma}^{2} - (pc)^{2} = 0
\fontsize{3} E_{\gamma}^{2} = (pc)^{2}
\fontsize{3} E_{A}^{2} E_{\gamma} = (mc^{2})^{2}
\fontsize{3} E_{\gamma} = [(Mc^{2})^{2} - (mc^{2})^{2}] \div 2Mc^{2}
\fontsize{3} mc^{2} = Mc^{2} - E_{o}
\fontsize{3} E_{\gamma} = [(E_{o}^{2} + 2Mc^{2}E_{o}] \div 2Mc^{2}
\fontsize{3} E_{o} - E_{\gamma} = \Delta = -E_{o} \div 2Mc^{2}
\fontsize{3} 5 \times 10^{-7} \sigma m
\fontsize{3} B = \mu_{o}nI
\fontsize{3} B = \mu_{o} \times 10000I
\fontsize{3} A = \pi \times [(1.01)^{2} - (0.99)^{2}]
\fontsize{3} A = 0.04\pi cm^{2}
\fontsize{3} A = 4\pi \times 10^{-6} m^{2}
\fontsize{3} \phi = \mu \times 10000 \times I \times 4\pi\times10^{-6}
\fontsize{3} \phi = 0.04\pi \times \mu \times I
\fontsize{3} I = Dcos\omega t
\fontsize{3} \omega=2\pi \times 100Hz
\fontsize{3} \frac{d\phi}{dt} = -\epsilon
\fontsize{3} A = \pi \times [(1.005)^{2} - (0.995)^{2}]
\fontsize{3} \omega
\fontsize{3} A = \pi \times [(1.005)^{2} - (0.995)^{2}]
\fontsize{3} \omega
Last reply 11 hours ago
Oxbridge applicants for modern languages - 2025 entry (applying in 2024)60
141
Last reply 5 days ago
Any Oxford Phil & Theo applicants heard back about interviews?