1.
BC . AC = |BC| |AC| cos(BCA)
BC = (1-2, 5-0, -1-5) = (-1, 5, -6)
AC = (1+1, 5-2, -1+1) = (2, 3, 0)
|BC| = sqrt(62)
|AC| = sqrt(13)
cos(BCA) = (BC . CA)/(|BC| |CA|) = (-2 + 15)/sqrt(62*13) = 13/sqrt(806)
Area of ABC:
0.5 * |BC| * |AC| * sin(BCA) = 0.5 * sqrt(806) * sqrt[1-cos(BCA)²] = 0.5 sqrt(806) sqrt(49/62) = 0.5 sqrt(637)
2.
Draw a triangle with the given information. (See attachment.)
Using the cosine rule:
|a-b|² = |a|² + |b|² - 2 |a| |b| cosθ
49 = 9 + 25 - 30cosθ
cosθ = -0.5
θ = 2pi/3