This discussion is now closed.
\Large[br] r \ = \ 4(1-e^{-\lambda t}) \\ \, \\[br]dr/dt \ = \ 4\lambda e^{-\lambda t} \\ \, \\[br][br]A \ = \ \pi r^2 \\ \, \\[br]dA/dr \ = \ 2 \pi r \\ \, \\[br][br]dA/dt \ = \ \frac{dA}{dr} \frac{dr}{dt} \\ \, \\[br]dA/dt \ = \ 2 \pi r . 4\lambda e^{-\lambda t} \\ \, \\[br]substitute \ r: \ r \ = \ 4-4e^{-\lambda t} \\ \, \\[br][br][br]dA/dt \ = \ 8 \pi \lambda (4 - 4e^{-\lambda t})e^{-\lambda t} \\ \, \\[br]dA/dt \ = \ 32 \pi \lambda (1 - e^{-\lambda t})e^{-\lambda t} \\ \, \\[br]dA/dt \ = \ 32 \pi \lambda (e^{-\lambda t} - e^{-\lambda 2t})\\ \, \\[br]
\Bigint \frac{1}{A^{3/2}} dA \ = \ \Bigint \frac{1}{t^2} dt
Last reply 1 week ago
can someone please explain what principle domain is and why the answer is a not c?0
13