Please ignore. Watch

rnd
Badges: 6
Rep:
?
#1
Report Thread starter 9 years ago
#1
FP1 induction example

f(n)=5^{2n+2}-24n-25

Prove f(n) is divisible by 576 for n=1,2,3,4.....

f(1)=576

If (for some k >1) f(k) is divisible by 576 then f(k)=5^{2k+2}-24k-25=576m for some natural number m.

5^{2k+2}=576m+24k+25

f(k+1)=5^{2k+4}-24k-49

f(k+1)=25\times5^{2k+2}-24k-49

f(k+1)=25(576m+24k+25) -24k-49

f(k+1)=25\times 576m+25\times 24k+25\times25 -24k-49

f(k+1)=25\times 576m+24\times 24k+25\times25 -49

f(k+1)=25\times 576m+576 k+576

f(k+1)=576 (25m+k+1)

etc..

An interesting problem http://www.thestudentroom.co.uk/show....php?t=1293042

e^{-\frac{1}{2}i\theta}-e^{\frac{1}{2}i\theta}

=\cos(\frac{1}{2}\theta)-i\sin(\frac{1}{2}\theta)-(\cos(\frac{1}{2}\theta)+i\sin(\  frac{1}{2}\theta))

=-2i\sin(\frac{1}{2}\theta)
____________________
(1-e^{i\theta})^2=(e^{\frac{1}{2}i\  theta}(e^{-\frac{1}{2}i\theta}-e^{\frac{1}{2}i\theta}))^2=e^{i\  theta}(-2i\sin(\frac{1}{2}\theta))^2=-4e^{i\theta}\sin^2(\frac{1}{2}\t  heta)
____________________

C+iS=1-\binom{2n}{1}(\cos\theta+i\sin\t  heta)+\binom{2n}{2}(\cos2\theta+  i\sin2\theta)-......

=1-\binom{2n}{1}e^{i\theta}+\binom{  2n}{2}e^{i2\theta}-....=(1-e^{i\theta})^{2n}=(-4e^{i\theta}\sin^2(\frac{1}{2}\t  heta))^n
=(-4)^n(\cos n\theta+i \sin n\theta)\sin^{2n}(\frac{1}{2}\th  eta)

C=...
S=...

(1-w)^6=(1-e^{i\theta})^6=(-4)^3\cos3\theta\sin^6(\frac{1}{2  }\theta)+i(-4)^3\sin3\theta\sin^6(\frac{1}{2  }\theta)

If w is a cube root of 1 then theta=0, 2pi/3, 4pi/3

(1-w)^6 = -27, 0, 27
_______________________________

Step 1 2010 Q13

P(first text in second hour) = P(0 in first hour)*P(>0 in second hour)

p=e^{-\lambda}(1-e^{-\lambda})

gives the required equation pe^{2\lambda}-e^{\lambda}+1=0

For the two positive values of lambda.. one is easy, for the other show that e^{\lambda}=\frac{1}{2p}(1-\sqrt{1-4p})&gt;1 for 0<p<1/4

Starting with 1-4p+4p^2&gt;1-4p leads to \frac{1-\sqrt{1-4p}}{2p}&gt;1 so e^{\lambda}&gt;1 and so \lambda&gt;0

Mildred's lamdas satisfy pe^{2\lambda}-e^{\lambda}+1=0

so using product of roots e^{\lambda_1+\lambda_2}=\frac{1}  {p}

\lambda_1+\lambda_2=-\ln p

The combined rate for the two phones is \lambda_1+\lambda_2 subbing this in for lambda in the given equation results in p(1-p) as the required probability.
0
quote
reply
X

Reply to thread

Attached files
Write a reply...
Reply
new posts
Latest
My Feed

See more of what you like on
The Student Room

You can personalise what you see on TSR. Tell us a little about yourself to get started.

Personalise

University open days

  • University of Lincoln
    Brayford Campus Undergraduate
    Wed, 12 Dec '18
  • Bournemouth University
    Midwifery Open Day at Portsmouth Campus Undergraduate
    Wed, 12 Dec '18
  • Buckinghamshire New University
    All undergraduate Undergraduate
    Wed, 12 Dec '18

Do you like exams?

Yes (200)
18.8%
No (646)
60.71%
Not really bothered about them (218)
20.49%

Watched Threads

View All