• Revision:Differentiation of Hyperbolic Functions

TSR Wiki > Study Help > Subjects and Revision > Revision Notes > Mathematics > Differentiation of Hyperbolic Functions


Derivatives of Hyperbolic Functions

 \dfrac{\text{d}}{\text{d} x}(\sinh x) = \cosh x


 \dfrac{\text{d}}{\text{d} x}(\cosh x) = \sinh x


 \dfrac{\text{d}}{\text{d} x}(\tanh x) = \mathrm{sech} ^2x


 \dfrac{\text{d}}{\text{d} x}(\mathrm{sech} x) = -\mathrm{sech} x\tanh x


 \dfrac{\text{d}}{\text{d} x}(\mathrm{cosech} x) = -\mathrm{cosech} x\coth x


 \dfrac{\text{d}}{\text{d} x}(\coth x) = -\mathrm{cosech} ^2x


Derivatives of Inverse Hyperbolic Functions

 \dfrac{\text{d}}{\text{d} x}(\mathrm{arsinh} x) = \dfrac{1}{\sqrt{x^2+1}}


 \dfrac{\text{d}}{\text{d} x}(\mathrm{arcosh} x) = \dfrac{1}{\sqrt{x^2-1}}


 \dfrac{\text{d}}{\text{d} x}(\mathrm{artanh} x) = \dfrac{1}{1-x^2}

Derivatives of Inverse Trigonometric Functions

 \dfrac{\text{d}}{\text{d} x}(\arcsin x) = \dfrac{1}{\sqrt{1-x^2}}


 \dfrac{\text{d}}{\text{d} x}(\arccos x) = \dfrac{-1}{\sqrt{1-x^2}}


 \dfrac{\text{d}}{\text{d} x}(\arctan x) = \dfrac{1}{1+x^2}

Try Learn together, TSR's study area

44,253
revision notes

51,678
mindmaps

54,669
crosswords

17,766
quizzes

create
a study planner

thousands
of discussions


Poll
Do you like carrot cake?

The Student Room, Get Revising and Marked by Teachers are trading names of The Student Room Group Ltd.

Register Number: 04666380 (England and Wales), VAT No. 806 8067 22 Registered Office: International House, Queens Road, Brighton, BN1 3XE