• Revision:Differentiation of Hyperbolic Functions

TSR Wiki > Study Help > Subjects and Revision > Revision Notes > Mathematics > Differentiation of Hyperbolic Functions


Derivatives of Hyperbolic Functions

 \dfrac{\text{d}}{\text{d} x}(\sinh x) = \cosh x


 \dfrac{\text{d}}{\text{d} x}(\cosh x) = \sinh x


 \dfrac{\text{d}}{\text{d} x}(\tanh x) = \mathrm{sech} ^2x


 \dfrac{\text{d}}{\text{d} x}(\mathrm{sech} x) = -\mathrm{sech} x\tanh x


 \dfrac{\text{d}}{\text{d} x}(\mathrm{cosech} x) = -\mathrm{cosech} x\coth x


 \dfrac{\text{d}}{\text{d} x}(\coth x) = -\mathrm{cosech} ^2x


Derivatives of Inverse Hyperbolic Functions

 \dfrac{\text{d}}{\text{d} x}(\mathrm{arsinh} x) = \dfrac{1}{\sqrt{x^2+1}}


 \dfrac{\text{d}}{\text{d} x}(\mathrm{arcosh} x) = \dfrac{1}{\sqrt{x^2-1}}


 \dfrac{\text{d}}{\text{d} x}(\mathrm{artanh} x) = \dfrac{1}{1-x^2}

Derivatives of Inverse Trigonometric Functions

 \dfrac{\text{d}}{\text{d} x}(\arcsin x) = \dfrac{1}{\sqrt{1-x^2}}


 \dfrac{\text{d}}{\text{d} x}(\arccos x) = \dfrac{-1}{\sqrt{1-x^2}}


 \dfrac{\text{d}}{\text{d} x}(\arctan x) = \dfrac{1}{1+x^2}

Try Learn together, TSR's study area

38,296
revision notes

42,884
mindmaps

44,323
crosswords

15,928
quizzes

create
a study planner

thousands
of discussions


Poll
Tea vs coffee

The Student Room, Get Revising and Marked by Teachers are trading names of The Student Room Group Ltd.

Register Number: 04666380 (England and Wales), VAT No. 806 8067 22 Registered Office: International House, Queens Road, Brighton, BN1 3XE