• Revision:Differentiation of Hyperbolic Functions

TSR Wiki > Study Help > Subjects and Revision > Revision Notes > Mathematics > Differentiation of Hyperbolic Functions


Derivatives of Hyperbolic Functions

 \dfrac{\text{d}}{\text{d} x}(\sinh x) = \cosh x


 \dfrac{\text{d}}{\text{d} x}(\cosh x) = \sinh x


 \dfrac{\text{d}}{\text{d} x}(\tanh x) = \mathrm{sech} ^2x


 \dfrac{\text{d}}{\text{d} x}(\mathrm{sech} x) = -\mathrm{sech} x\tanh x


 \dfrac{\text{d}}{\text{d} x}(\mathrm{cosech} x) = -\mathrm{cosech} x\coth x


 \dfrac{\text{d}}{\text{d} x}(\coth x) = -\mathrm{cosech} ^2x


Derivatives of Inverse Hyperbolic Functions

 \dfrac{\text{d}}{\text{d} x}(\mathrm{arsinh} x) = \dfrac{1}{\sqrt{x^2+1}}


 \dfrac{\text{d}}{\text{d} x}(\mathrm{arcosh} x) = \dfrac{1}{\sqrt{x^2-1}}


 \dfrac{\text{d}}{\text{d} x}(\mathrm{artanh} x) = \dfrac{1}{1-x^2}

Derivatives of Inverse Trigonometric Functions

 \dfrac{\text{d}}{\text{d} x}(\arcsin x) = \dfrac{1}{\sqrt{1-x^2}}


 \dfrac{\text{d}}{\text{d} x}(\arccos x) = \dfrac{-1}{\sqrt{1-x^2}}


 \dfrac{\text{d}}{\text{d} x}(\arctan x) = \dfrac{1}{1+x^2}

Try Learn together, TSR's study area

40,340
revision notes

46,322
mindmaps

48,276
crosswords

16,729
quizzes

create
a study planner

thousands
of discussions


Poll
Which pet is the best?

The Student Room, Get Revising and Marked by Teachers are trading names of The Student Room Group Ltd.

Register Number: 04666380 (England and Wales), VAT No. 806 8067 22 Registered Office: International House, Queens Road, Brighton, BN1 3XE