You are Here: Home >< Maths

# cartesian equation question!!!

Announcements Posted on
Why bother with a post grad? Are they even worth it? Have your say! 26-10-2016
Q. show that the straight line given parametrically by the equations
x= (2-t)/(1+2t) and y=(3+t)/(1+2t) passes through the points (6,7) and (-2,-1). Find the values of t corresponding to these points
2. (Original post by Carokelly123)
Q. show that the straight line given parametrically by the equations
x= (2-t)/(1+2t) and y=(3+t)/(1+2t) passes through the points (6,7) and (-2,-1). Find the values of t corresponding to these points
You don't need to eliminate t for this question. Substitute x = 6 and work out the value of t. Check that substituting the value of t into y gives 7. Similarly for the other point.
3. (Original post by Carokelly123)
Q. show that the straight line given parametrically by the equations
x= (2-t)/(1+2t) and y=(3+t)/(1+2t) passes through the points (6,7) and (-2,-1). Find the values of t corresponding to these points
It's a straight line so you can find the gradient using
so you can equate the gradients and find t.

Or do what tinyhobbit said as that's much easier.
4. x=(2-t)/(1+2t)
cross multiply
x+2tx=2-t
get t on one side
2tx+t=2-x
factorise t
t(2x+1)=2-x
divide both sides by (2x+1) to leave t alone
t=(2-x)/(2x+1)

you can sub into y
y=[3+(2-x/2x+1)]/[1+2(2-x/2x+1)]

to prove it passes through points, sub in x=6 to make sure your value for y=7
do the same for x=-2 giving y=-1

to find corresponding values of t, equate x in terms of t with 6, then equate y in terms of t with 7, you should get the same value for t. (i think its -4/13)

i.e. (2-t)/(1+2t) = 6
(3+t)/(1+2t)=7
t=?

(2-t)/(1+2t) = -2
(3+t)/(1+2t)=7=-1
t=?

## Register

Thanks for posting! You just need to create an account in order to submit the post
1. this can't be left blank
2. this can't be left blank
3. this can't be left blank

6 characters or longer with both numbers and letters is safer

4. this can't be left empty
1. Oops, you need to agree to our Ts&Cs to register

Updated: October 17, 2016
TSR Support Team

We have a brilliant team of more than 60 Support Team members looking after discussions on The Student Room, helping to make it a fun, safe and useful place to hang out.

This forum is supported by:
Today on TSR

### Who is getting a uni offer this half term?

Find out which unis are hot off the mark here

Poll
Useful resources

### Maths Forum posting guidelines

Not sure where to post? Read here first

### How to use LaTex

Writing equations the easy way

### Study habits of A* students

Top tips from students who have already aced their exams