The Student Room Group

Complex Numbers

Could someone explain the very last step of these proofs;

trig.jpg

ie. How:

ink(i)nk2i=sin(12(nk)π)\frac{i^{n-k} - (-i)^{n-k}}{2i} = sin(\frac{1}{2}(n-k)\pi)

and

ink+(i)nk2=cos(12(nk)π)\frac{i^{n-k} + (-i)^{n-k}}{2} = cos(\frac{1}{2}(n-k)\pi)
Reply 1
Original post by Ateo
Could someone explain the very last step of these proofs;

trig.jpg

ie. How:

ink(i)nk2i=sin(12(nk)π)\frac{i^{n-k} - (-i)^{n-k}}{2i} = sin(\frac{1}{2}(n-k)\pi)

and

ink+(i)nk2=cos(12(nk)π)\frac{i^{n-k} + (-i)^{n-k}}{2} = cos(\frac{1}{2}(n-k)\pi)



i=eiπ2\displaystyle i=e^{i\frac{\pi}{2}}
i=eiπ2\displaystyle -i=e^{-i\frac{\pi}{2}}
and
cosh(ix)=cosx\displaystyle cosh(ix)=cosx
1isinh(ix)=sinx\displaystyle \frac{1}{i}sinh(ix)=sinx
Reply 2
Original post by ztibor
i=eiπ2\displaystyle i=e^{i\frac{\pi}{2}}
i=eiπ2\displaystyle -i=e^{-i\frac{\pi}{2}}
and
cosh(ix)=cosx\displaystyle cosh(ix)=cosx
1isinh(ix)=sinx\displaystyle \frac{1}{i}sinh(ix)=sinx


Thank you, I haven't covered hyperbolic functions yet but was able to understand this with a quick peak at the chapter.
Reply 3
Look back to the first line i.e.

sin(mx)=eimxeimx2i\sin(mx) = \frac{e^{i m x} - e^{-imx}}{2i}

and put

m=12(nk)m=\frac{1}{2}(n-k) and x=πx=\pi

to get

sin(12(nk)π)=(eiπ)12(nk)(eiπ)12(nk)2i\sin(\frac{1}{2}(n-k)\pi) = \frac{(e^{i \pi})^{\frac{1}{2}(n-k)} - (e^{i\pi})^{\frac{-1}{2}(n-k)}}{2i}

Then use eiπ=1e^{i \pi} = -1 to get

((eiπ)12)(nk)((eiπ)12)(nk)2i=((1)12)(nk)((1)12)(nk)2i=i(nk)(i1)(nk)2i=i(nk)(i)(nk)2i\frac{((e^{i \pi})^{\frac{1}{2}})^{(n-k)} - ((e^{i\pi})^{\frac{-1}{2}})^{(n-k)}}{2i} = \frac{((-1)^{\frac{1}{2}})^{(n-k)} - ((-1)^{\frac{-1}{2}})^{(n-k)}}{2i} = \frac{i^{(n-k)} - (i^{-1})^{(n-k)}}{2i} = \frac{i^{(n-k)} - (-i)^{(n-k)}}{2i}


Similarly for the other one.

Quick Reply

Latest