The Student Room Group

Impossible to complete ;)

Scroll to see replies

Original post by TenOfThem
Hmmmmmm I am not happy with the way Fishy is using square

I would want to use the 2 for square otherwise, what is to stop us from using any power we want


Yeah I stopped :tongue:
Original post by L'Evil Fish
Yeah I stopped :tongue:


lol

did you get 19 it is annoying me
Original post by TenOfThem
lol

did you get 19 it is annoying me


Hmmmm... He said you could used squared once :tongue: but without that..
Reply 43
if using squares once only, cant you do for 19: 2+42+1+02+4^{2}+1+0 ?

(or, sorry - are you trying to get it a certain way? - apologies if you are!)
Original post by Hasufel
if using squares once only, cant you do for 19: 2+42+1+02+4^{2}+1+0 ?

(or, sorry - are you trying to get it a certain way? - apologies if you are!)


You can only use square once because you only have one 2

You have used two 2s
Reply 45
Original post by TenOfThem
lol

did you get 19 it is annoying me

I don't think it's possible :s-smilie:. And I don't know how you'd prove it either.
Reply 46
Original post by TenOfThem
You can only use square once because you only have one 2

You have used two 2s

In the middle of my maths lessons, I figured it out
4!(2+1)!+cos(0)=194!-(2+1)!+\cos(0)=19 :biggrin:.
Original post by Dilzo999
In the middle of my maths lessons, I figured it out
4!(2+1)!+cos(0)=194!-(2+1)!+\cos(0)=19 :biggrin:.


Nice

I have been avoiding trig but 0! does the same :smile:
Original post by Dilzo999
In the middle of my maths lessons, I figured it out
4!(2+1)!+cos(0)=194!-(2+1)!+\cos(0)=19 :biggrin:.


On that note:

14=4!2+1+cos(0)[br]15=(42)1+0[br]16=42+(0×1)[br]17=42+1+0[br]18=42+1+cos(0)[br]19=4!(2+1)!+cos(0)[br]20=4!(2+1+cos(0))[br]21=4!(2+1+0)[br]22=4!(2+(1×0))[br]23=4!(1+(2×0))[br]24=4!((2+1)×0)[br]25=4!+(1+(2×0))[br]26=4!+(2+(1×0))[br]27=4!+2+1+0[br]14 = \frac{4!}{2} +1 + cos(0)[br]15 = (4^2) -1 + 0[br]16 = 4^2 + (0\times1)[br]17 = 4^2 + 1 + 0[br]18 = 4^2 + 1 + cos(0)[br]19 = 4! - (2+1)!+\cos(0)[br]20 = 4! - (2 + 1 + cos(0))[br]21 = 4! - (2 + 1 + 0)[br]22 = 4! - (2 + (1 \times 0))[br]23 = 4! - (1 + (2 \times 0))[br]24 = 4! - ((2 + 1) \times 0)[br]25 = 4! + (1 + (2 \times 0))[br]26 = 4! + (2 + (1 \times 0))[br]27 = 4! + 2 + 1 + 0[br]
[br]28=4!+2+1+cos(0)[br]29=4!+(2+1)!cos(0)[br]30=4!+(2+1)!+0[br]31=4!+(2+1)!+cos(0)[br]32=24+1+0[br]33=24+1+cos(0)[br]34=r=14(r2+cos(0))[br]35=r=04(r2+1)[br]36=(4+2)1+cos(0)[br]37=r=214(r!+cos(0))[br]38=r=2×04(r!+1))[br]39=(r=14(r!+cos(0)))+2[br]40=(r=14(r!+2))cos(0)[br]41=(r=14(r!+2))+0)[br]42=(r=14(r!+2))+cos(0))[br]43=(r=04(r!+2))1[br]44=(r=04(r!+2))×1[br]45=(r=04(r!+2))+1[br]46=(4!1)×2+0[br]47=(4!1)×2+cos(0)[br][br]28 = 4! + 2 + 1 + cos(0)[br]29 = 4! + (2+1)! - cos(0)[br]30 = 4! + (2+1)! + 0[br]31 = 4! + (2+1)! + cos(0)[br]32 = 2^{4+1} + 0[br]33 = 2^{4+1} + cos(0)[br]34 = \sum_{r=1}^{4}(r^2 + cos(0))[br]35 = \sum_{r=0}^{4}(r^2 + 1)[br]36 = (4+2)^{1 + cos(0)}[br]37 = \sum_{r=2-1}^{4}(r! + cos(0))[br]38 = \sum_{r= 2\times 0}^{4}(r! + 1))[br]39 = (\sum_{r=1}^{4}(r! + cos(0))) +2[br]40 = (\sum_{r=1}^{4}(r! + 2)) - cos(0)[br]41 = (\sum_{r=1}^{4}(r! + 2)) + 0)[br]42 = (\sum_{r=1}^{4}(r! + 2)) + cos(0))[br]43 = (\sum_{r=0}^{4}(r! + 2)) -1[br]44 = (\sum_{r=0}^{4}(r! + 2)) \times 1[br]45 = (\sum_{r=0}^{4}(r! + 2)) + 1[br]46 = (4! - 1) \times 2 + 0[br]47 = (4! - 1) \times 2 + cos(0)[br]
[br]48=4!×2+(0×1)[br]49=4!×2+0+1[br]50=4!×2+cos(0)+1[br]51=2×(4!+1)+cos(0)[br]52=2×(4!+1+cos(0))[br]53=r=12(4!+r+cos(0))[br]54=r=01(4!+r!+2)[br][br]48 = 4! \times 2 + (0 \times 1)[br]49 = 4! \times 2 + 0 + 1[br]50 = 4! \times 2 + cos(0) + 1[br]51 = 2 \times (4! +1) + cos(0)[br]52 = 2 \times (4! +1 + cos(0))[br]53 = \sum_{r=1}^{2}(4! + r + cos(0))[br]54 = \sum_{r=0}^{1}(4! + r! + 2)[br]

34 was hard!
(edited 10 years ago)
Reply 49
Original post by ExcitinglyMundane
On that note:

14=4!2+1+cos(0)[br]15=(42)1+0[br]16=42+(0×1)[br]17=42+1+0[br]18=42+1+cos(0)[br]19=4!(2+1)!+cos(0)[br]20=4!(2+1+cos(0))[br]21=4!(2+1+0)[br]22=4!(2+(1×0))[br]23=4!(1+(2×0))[br]24=4!((2+1)×0)[br]25=4!+(1+(2×0))[br]26=4!+(2+(1×0))[br]27=4!+2+1+0[br]14 = \frac{4!}{2} +1 + cos(0)[br]15 = (4^2) -1 + 0[br]16 = 4^2 + (0\times1)[br]17 = 4^2 + 1 + 0[br]18 = 4^2 + 1 + cos(0)[br]19 = 4! - (2+1)!+\cos(0)[br]20 = 4! - (2 + 1 + cos(0))[br]21 = 4! - (2 + 1 + 0)[br]22 = 4! - (2 + (1 \times 0))[br]23 = 4! - (1 + (2 \times 0))[br]24 = 4! - ((2 + 1) \times 0)[br]25 = 4! + (1 + (2 \times 0))[br]26 = 4! + (2 + (1 \times 0))[br]27 = 4! + 2 + 1 + 0[br]
[br]28=4!+2+1+cos(0)[br]29=4!+(2+1)!cos(0)[br]30=4!+(2+1)!+0[br]31=4!+(2+1)!+cos(0)[br]32=24+1+0[br]33=24+1+cos(0)[br]34=r=14(r2+cos(0))[br]35=r=04(r2+1)[br]36=(4+2)1+cos(0)[br]37=r=214(r!+cos(0))[br]38=r=2×04(r!+1))[br]39=(r=14(r!+cos(0)))+2[br]40=(r=14(r!+2))cos(0)[br]41=(r=14(r!+2))+0)[br]42=(r=14(r!+2))+cos(0))[br]43=(r=04(r!+2))1[br]44=(r=04(r!+2))×1[br]45=(r=04(r!+2))+1[br]46=(4!1)×2+0[br]47=(4!1)×2+cos(0)[br][br]28 = 4! + 2 + 1 + cos(0)[br]29 = 4! + (2+1)! - cos(0)[br]30 = 4! + (2+1)! + 0[br]31 = 4! + (2+1)! + cos(0)[br]32 = 2^{4+1} + 0[br]33 = 2^{4+1} + cos(0)[br]34 = \sum_{r=1}^{4}(r^2 + cos(0))[br]35 = \sum_{r=0}^{4}(r^2 + 1)[br]36 = (4+2)^{1 + cos(0)}[br]37 = \sum_{r=2-1}^{4}(r! + cos(0))[br]38 = \sum_{r= 2\times 0}^{4}(r! + 1))[br]39 = (\sum_{r=1}^{4}(r! + cos(0))) +2[br]40 = (\sum_{r=1}^{4}(r! + 2)) - cos(0)[br]41 = (\sum_{r=1}^{4}(r! + 2)) + 0)[br]42 = (\sum_{r=1}^{4}(r! + 2)) + cos(0))[br]43 = (\sum_{r=0}^{4}(r! + 2)) -1[br]44 = (\sum_{r=0}^{4}(r! + 2)) \times 1[br]45 = (\sum_{r=0}^{4}(r! + 2)) + 1[br]46 = (4! - 1) \times 2 + 0[br]47 = (4! - 1) \times 2 + cos(0)[br]
[br]48=4!×2+(0×1)[br]49=4!×2+0+1[br]50=4!×2+cos(0)+1[br]51=2×(4!+1)+cos(0)[br]52=2×(4!+1+cos(0))[br]53=r=12(4!+r+cos(0))[br]54=r=01(4!+r!+2)[br][br]48 = 4! \times 2 + (0 \times 1)[br]49 = 4! \times 2 + 0 + 1[br]50 = 4! \times 2 + cos(0) + 1[br]51 = 2 \times (4! +1) + cos(0)[br]52 = 2 \times (4! +1 + cos(0))[br]53 = \sum_{r=1}^{2}(4! + r + cos(0))[br]54 = \sum_{r=0}^{1}(4! + r! + 2)[br]

34 was hard!

Wow nice use of a summation :biggrin:.
Original post by Dilzo999
Wow nice use of a summation :biggrin:.


Thanks :-) Time for more!
[br]55=r=01(4!+(r+2)!r)[br]56=r=01(4!+(r+2)!)[br]57=r=01(4!+(r+2)!+r)[br][br]55 = \sum_{r=0}^{1}(4! + (r+2)! - r)[br]56 = \sum_{r=0}^{1}(4! + (r+2)!)[br]57 = \sum_{r=0}^{1}(4! + (r+2)! + r)[br]
Original post by Dilzo999
I don't think it's possible :s-smilie:. And I don't know how you'd prove it either.


Original post by TenOfThem
lol

did you get 19 it is annoying me

I know I'm too late now as it's already been got, but this function also evaluates to 19. I'm not happy with it because int() is only really a mathematical function in code, I've never used it in pure maths.
int(24+arccos(0)+arcsin(1))=19int(2^4+arccos(0)+arcsin(1))=19
(edited 10 years ago)

Quick Reply

Latest