The Student Room Group

"From the Earth to the Moon" - Jules Verne's original problem

In Jules Verne's original problem, find the minimal launch velocity v0v_0 that suffices for the projectile to make it "From the Earth to the Moon". (To reach the moon, the projectile must only just pass the point between the moon and earth where its net acceleration vanishes.)

G6.7261020 km3/kg.s2G \approx 6.726*10^{-20}\ km^3/kg.s^2

Me=5.9751024 kgM_e=5.975*10^{24}\ kg

Mm=7.351022 kgM_m=7.35*10^{22}\ kg

S is the distance between the centers of the earth and the moon and is = 384,000 km

R is the radius of the earth and is = 6,378 km

Let r be the distance of the projectile from the center of the earth.

a=GMer2+GMm(Sr)2a=-\frac{GM_e}{r^2}+\frac{GM_m}{(S-r)^2}

a=0a=0

GMer2+GMm(Sr)2=0-\frac{GM_e}{r^2}+\frac{GM_m}{(S-r)^2}=0

r2(Sr)2=MeMm=5.97510247.351022\frac{r^2}{(S-r)^2}=\frac{M_e}{M_m}=\frac{5.975*10^{24}}{7.35*10^{22}}

r384,000r9.016\frac{r}{384,000-r}\approx 9.016

r384,000=9.01610.016\frac{r}{384,000}=\frac{9.016}{10.016}

r345,661 kmr\approx 345,661\ km

vdvdr=GMer2+GMm(Sr)2v\frac{dv}{dr}=-\frac{GM_e}{r^2}+\frac{GM_m}{(S-r)^2}

vdv=[GMer2+GMm(Sr)2]dr\int vdv=\int \left[-\frac{GM_e}{r^2}+\frac{GM_m}{(S-r)^2}\right]dr

v22=GMer+GMm/(Sr)+C\frac{v^2}{2}=\frac{GM_e}{r}+GM_m/(S-r)+C

v(345,661)=0v(345,661)=0

GMe345,661+GMm384,400345,661+C=0\frac{GM_e}{345,661}+\frac{GM_m}{384,400-345,661}+C=0

C=6.7261020(5.9751024345,661+7.35102238,739)C=-6.726*10^{-20}\left(\frac{5.975*10^{24}}{345,661}+\frac{7.35*10^{22}}{38,739}\right)

=1.290=-1.290

v22=GMer+GMm/(Sr)1.290\frac{v^2}{2}=\frac{GM_e}{r}+GM_m/(S-r)-1.290

v(R)=v0v(R)=v_0

v022=6.7261020(5.97510246,378+7.351022384,4006,378)1.290\frac{v_0^2}{2}=6.726*10^{-20}\left(\frac{5.975*10^{24}}{6,378}+\frac{7.35*10^{22}}{384,400-6,378}\right)-1.290

v02124.7564v_0^2\approx 124.7564

v011.1 km/sv_0\approx 11.1\ km/s.
(edited 12 years ago)
Reply 1
e: units, sorry. I'll look through again.

Quick Reply

Latest