The Student Room Group

Determining the solution of a closed loop system

Consider the system q¨(t)=u(t)\ddot{q}(t)=u(t) and y=(q(t)q˙(t))y=\begin{pmatrix} q(t) \\ \dot{q}(t) \end{pmatrix}

Take (ϵsin(ωt)ϵsin(ωt))\begin{pmatrix} \epsilon\sin{(\omega t)} \\ \epsilon\sin{(\omega t)} \end{pmatrix} as the noise, with ϵ\epsilon small and ω\omega large.

So the output we have at our disposal for controlling the system is

(q(t)q˙(t))+(ϵsin(ωt)ϵsin(ωt))\begin{pmatrix} q(t) \\ \dot{q}(t) \end{pmatrix} +\begin{pmatrix} \epsilon\sin{(\omega t)} \\ \epsilon\sin{(\omega t)} \end{pmatrix}.

Choose u(t)=(12)u(t)=\begin{pmatrix} -1 & -2 \end{pmatrix} and y(t)=2q(t)q(t)y(t)=-2q'(t)-q(t),

Then applying this to our system, we get

u(t)=2(q(t)+ϵsin(ωt))(q(t)+ϵsin(ωt))u(t)=-2(q'(t)+\epsilon\sin{(\omega t)})-(q(t)+\epsilon\sin{(\omega t)})

I want to determine the solution of this closed loop system and that the perturbation on the output yy remains bounded...Or more precisely, the perturbation on the output yy is bounded by CϵωC\frac{\epsilon}{\omega}, where C>0C>0 is independent of ϵ>0\epsilon >0 and ω1\omega\ge 1

So u(t)=2q(t)q(t)3ϵsin(ωt)u(t)=-2q'(t)-q(t)-3\epsilon\sin{(\omega t)}

Thus 0=q¨(t)+2q˙(t)+q(t)+3ϵsin(ωt)0=\ddot{q}(t)+2\dot{q}(t)+q(t)+3\epsilon\sin{(\omega t)}

Any tips on proceeding from here?
I get the inhomogeneous second order ODE,

q¨(t)+2q˙(t)+q(t)=3ϵsin(ωt)\ddot{q}(t)+2\dot{q}(t)+q(t)=-3\epsilon\sin{(\omega t)}.

How should one proceed with this?

The homogeneous part of the equation is,

qh(t)=c1et+c2tetq_{h}(t)=c_{1}e^{-t}+c_{2}te^{-t}
(edited 9 years ago)
No one? :sad:

Quick Reply

Latest