The Student Room Group

Scroll to see replies

Original post by DFranklin
Without detailed calculation, I would think you need to look at P(2k+2) / P(2k); I would expect you will find that there's a value K such that P(2k+2)/P(2k) > 1 for k < K, but P(2k+2)/P(2k) < 1 for k >= K. Then P(2k) is maximized when k = K.

Similarly find the maximum of P(2k+1).

Then decide which of these is actually the biggest.


Sorry but I am slightly confused as to why you chose P(2k+2). Do you mean P(2k) but with k replaced with k+1?
Original post by ben-smith
Sorry but I am slightly confused as to why you chose P(2k+2). Do you mean P(2k) but with k replaced with k+1?
I mean P(2k+2). Of course, since 2(k+1) = 2k+2, P(2k+2) is P(2k) with k replaced by k + 1.
yeah, sorry. stupid question.
OK, thanks. This is what I have done:
P(2k+2)P(2k)=4k2+10k+64k2+12k\frac{P(2k+2)}{P(2k)}=\frac{4k^2+10k+6}{4k^2+12k}
Set this to =1 and we get k=3
P(2k+3)P(2k+1)=4k2+14k+124k2+16k\frac{P(2k+3)}{P(2k+1)}=\frac{4k^2+14k+12}{4k^2+16k}
Set this to =1 and we get k=6.
P(6)>P(13) so maximum when S=6.

however the question says values of S and I notice that P(8)=P(6), so it would be a max to. why wasn't that a solution when solving for k earlier?:confused:
Well, if P(2k+2)/P(2k) = 1, what does that tell you about whether or not P(2k+2) = P(2k)?

[I confess I expected there to be a distinct maximum, so I didn't allow for equality in my post at #180. However, a certain amount of thinking for your self is expected with STEP...]

Edit: So, having looked at the paper for more than 5 seconds, I see it does ask for the values, so I guess we should have expected more than 1 possible choice for k.
(edited 13 years ago)
Yes, I just realised that I was being an idiot and that I had forgotten to follow through on my (*your*) original proposition. If P(2k)=P(k+2) and k=3 then max occurs at P(6,8) because a value of k where P(2k)=P(k+2) holds is like a stationary point. (very badly expressed)

What do you think of the difficulty of this question? how would you rate it?
From my bare glance at it (basically what you've posted), it feels pretty straightforward. But it's not always easy for me to judge difficulty (I am probably less phased by "unusual concepts" than most, but not actually as good at the manipulation asI should be).
When I first saw the question, I thought I could use markov chains and stochastic matrices (I had just been reading about them) but I couldn't think of a feasible way of doing it, woe is me...
Original post by gyrase
STEP II/5

The group has an identity element e, other elements g_1, g_2 ... and the operation is say *. Then the order of an element g_1 is n such that g_1 * g_1 * g_1 * ... = (g_1)^n = e.

Let A be an element of group S. detA = 1.
Unparseable latex formula:

\displaystyle A=\begin{pmatrix} w&x \\ y&z \end{pmatrix}[br]\displaystyle A^-^1=[br]\frac{1}{wz + xy}\begin{pmatrix} z&-x \\ -y&w \end{pmatrix}

but wz + xy = 1 so
Unparseable latex formula:

\displaystyle A^-^1=\begin{pmatrix} z&-x \\ -y&w \end{pmatrix}



S is associative, has identity element I=(1001)\displaystyle I=\begin{pmatrix} 1&0 \\ 0&1 \end{pmatrix} and has unique inverse elements as above and closure;

A1A2=(w1x1y1z1)[br](w2x2y2z2)=(w1w2+x1y2w1x2+x1z2y1w2+z1y2y1x2+z1z2)\displaystyle A_1A_2=\begin{pmatrix} w_1&x_1 \\ y_1&z_1 \end{pmatrix}[br]\displaystyle \begin{pmatrix} w_2&x_2 \\ y_2&z_2 \end{pmatrix} = \displaystyle \begin{pmatrix} w_1w_2+x_1y_2&w_1x_2+x_1z_2 \\ y_1w_2+z_1y_2&y_1x_2+z_1z_2 \end{pmatrix}

A^-1 = A
I = A^2, w^2 + xy = 1
.............wx + xz = 0, x(w+z) = 0
.............yw + yz = 0, y(w+z) = 0
.............yx + z^2 = 1, yx + z^2 = w^2 + xy, z = w

(x-y)(w+z) = 0
z = w
2xw = 2yw = 0 .. w(x-y) = 0, x = y
also wz + xy = 1, w^2 = wz = z^2, solving gives A = I.

:will finish later:

I don't follow the bit in bold, surely zw-xy=1?
Maybe I'm going crazy...
Have the solution to 1992 Step 3 Q9 as pdf file but dont know how to place it in the list....will post here...ooops slight correction...see latest posting....
(edited 12 years ago)
Original post by SimonM
(Updated as far as post #159.) SimonM - 23.03.2009
........

STEP III Q15
First part:
if 0<ra)[br]P(R<r)=πr24/a2=πr24a20<r\leq a)[br]\Rightarrow P(R<r)=\frac{\pi r^2}{4}/a^2=\frac{\pi r^2}{4a^2}
if r>ar>a then the area we are concerned with will be the quarter of a circle like the last part but minus the bits where it exceeds the square. Call the point where the circle intersects the square X. Now consider the Right-angled triangle OCX. since OC=a and OX=r then the angle CO^X=arccosarC\hat{O}X=arccos{\frac{a}{r}}. So, the area of the sector subtended on that angle is 12r2arccosar\frac{1}{2}r^2arccos{\frac{a}{r}} and the area of the triangle OCX is 12rasin(arccosar)=12ra1(ar)2\frac{1}{2}rasin(arccos\frac{a}{r})=\frac{1}{2}ra \sqrt{1-(\frac{a}{r})^2}
Subtracting one from the other and then doubling we get the area outside of the i.e:
P(R<r)=(πr242(12r2arccosar12ra1(ar)2))/a2=πr24a2+1ar1(ar)2r2a2arccosarP(R<r)=(\frac{\pi r^2}{4}-2(\frac{1}{2}r^2arccos{\frac{a}{r}}-\frac{1}{2}ra \sqrt{1-(\frac{a}{r})^2}))/a^2=\frac{\pi r^2}{4a^2}+\frac{1}{a}r\sqrt{1-(\frac{a}{r})^2}-\frac{r^2}{a^2}arccos{\frac{a}{r}}
simplifying we get:
((ra)21)12+πr24a2r2a2arccos(ar)((\frac{r}{a})^2-1)^{\frac{1}{2}} +\frac{\pi r^2}{4a^2}-\frac{r^2}{a^2}arccos(\frac{a}{r}) as required.
Now, to find the median. The median will occur when P(R<r)=12P(R<r)=\frac{1}{2}. Since we don't know whether this will occur for r<a or not we will have to choose one case, solve and then see whether the result tallies with our initial assumption. Seeming as the case r<a is much simpler, let's try that:
πr24a2=12r=a(π2)1\frac{\pi r^2}{4a^2}=\frac{1}{2} \Rightarrow r=a(\sqrt{\frac{\pi}{2}})^{-1} and since (π2)1<1(\sqrt{\frac{\pi}{2}})^{-1}<1 we can accept this result.
Next part:
for r<a, πr24a2=0r(freq.dens)dr[br]πr24a2=[freq.dens.]0r\frac{\pi r^2}{4a^2}=\displaystyle\int^r_0(freq.dens)dr[br]\Rightarrow \frac{\pi r^2}{4a^2}=[freq.dens.]^r_0 . Differentiating both sides wrt r:
frequency density=π2a2r=\frac{\pi}{2a^2}r
Now, for r>a:
0r(freq.dens)dr=((ra)21)12+πr24a2r2a2arccos(ar)\displaystyle\int^r_0(freq.dens)dr=((\frac{r}{a})^2-1)^{\frac{1}{2}} +\frac{\pi r^2}{4a^2}-\frac{r^2}{a^2}arccos(\frac{a}{r})
So, again, we differentiate wrt r to get
freq.dens.=ra2(π22arccos(ar))freq.dens.=\frac{r}{a^2}(\frac{ \pi}{2}-2arccos(\frac{a}{r}))
*Disclaimer: I have obviously omitted some steps here and I did so because Latex is a **** sometimes. However, it was a bit fiddly so, if you get something different to me then it is fairly likely that I have made a mistake*
Last part:
This event will occur when the goat is inside a quarter circle of radius a, centre O and also within the half of the square made up of a rectangle with OC being one of the longer sides (draw a diagram).
let the mid point of OA be X and the point where the arc and the perpendicular bisector of OA meet be Y.
Since OX=a/2 and OY=a then the angle at O, XOY=pi/3 and therefore the angle COX=pi/6. Now, to find the area, all we have to do is find the area of the triangle OXY and the sector COX and add them together i.e:
Area=12aa2sin(π3)+12a2π6=\frac{1}{2}a\frac{a}{2}sin(\frac{\pi}{3})+\frac{1}{2}a^2\frac{\pi}{6}.
Now, to find the probability, divide by πa24\frac{\pi a^2}{4} to get:
32π16\frac{\sqrt{3}}{2 \pi}-\frac{1}{6}
Original post by SimonM
(Updated as far as post #159.) SimonM - 23.03.2009
...


STEP III Q16
First part:
Given a particular order of m+n trials, the probability of getting m successes and n failures is pm(1p)np^m(1-p)^n
However, we need to account for all the possible orderings of them which means we have to multiply this probability by the number of ways this event occur, that is:
P(exactly m successes and n failures)=pm(1p)n(m+nm)=p^m(1-p)^n\begin{pmatrix} m+n \\ m\end{pmatrix}
Second part:
P(fail to spot exactly n|spot exactly m)=P(failtospotnspotm)P(spotm)\frac{P(failto spotn\cap spotm)}{P(spot m)}
P(fail to spot n and you spot m)=eλλm+n(m+n)!pm(1p)n(m+n)!m!n!=\frac{e^{-\lambda}\lambda^{m+n}}{(m+n)!}p^m(1-p)^n\frac{(m+n)!}{m!n!}
P(spot m)=eλλmm!pm(mm)+eλλm+1(m+1)!(1p)pm(m+1m)+eλλm+2(m+2)!(1p)2pm(m+1m)...= \frac{e^{-\lambda}\lambda^m}{m!}p^m \begin{pmatrix} m \\ m \end{pmatrix} + \frac{e^{-\lambda}\lambda^{m+1}}{(m+1)!}(1-p)p^m \begin{pmatrix} m+1 \\ m \end{pmatrix} + \frac{e^{-\lambda}\lambda^{m+2}}{(m+2)!}(1-p)^2p^m \begin{pmatrix} m+1 \\ m \end{pmatrix}...
Or more concisely:
P(spot m)=r=0eλλm+r(m+r)!(1p)rpm(m+rm)=eλpmλmm!r=0λr(1p)rr!=\sum^{\infty}_{r=0} \frac{e^{-\lambda}\lambda^{m+r}}{(m+r)!}(1-p)^rp^m \begin{pmatrix} m+r \\ m \end{pmatrix}=\frac{e^{-\lambda}p^m\lambda^m}{m!} \displaystyle\sum^{\infty}_{r=0} \frac{\lambda^r(1-p)^r}{r!}
\thereforeP(fail to spot exactly n|spot exactly m)=λn(1p)nn!(r=0λr(1p)rr!)1=\frac{\lambda^n(1-p)^n}{n!}(\displaystyle\sum^{\infty}_{r=0} \frac{\lambda^r(1-p)^r}{r!})^{-1}.
Now, note that r=0λr(1p)rr!\displaystyle\sum^{\infty}_{r=0} \frac{\lambda^r(1-p)^r}{r!} is the maclaurin series expansion of eλ(1p)e^{\lambda (1-p)} which means that:
P(fail to spot exactly n|spot exactly m)=λn(1p)nn!e(1p)λ=\frac{\lambda^n(1-p)^n}{n!}e^{-(1-p)\lambda}
as required.
Original post by mikelbird
this is the correct version...
STEP II question 12
Let tension in string be T then since extension is
Unparseable latex formula:

2\lambdar\sin\theta=\frac{d}{2V\cos\theta}


Taking moments about the centre of the wheel C1C_1 for forces acting on C1 C_1
mgr=Trcosθmgr=Tr\cos\theta
Hence,
Unparseable latex formula:

mg=\frac{2\lambdar\sin\theta\cos\theta}{d}\Rightarrow\sin2\theta=\frac{gd}{r\lambda}

for equilibrium
(i) If there is no equilibrium position then there is no solution for sin2θλ<gdr\sin2\theta\Rightarrow\lambda< \frac{gd}{r}
(ii) There will be just one equilibrium position if sin2θ=gdrλ\sin2\theta= \frac{gd}{r\lambda} has only one solution
i.e. 2θ=90λ=gdr2\theta=90^{\circ}\Rightarrow \lambda=\frac{gd}{r}
(iii) If 0<sin2θ<10<\sin2\theta<1 then there are two solutions so two equilibrium positions for λ>gdr\lambda>\frac{gd}{r}
(iv) We cannot have more than two equilibrium positions.
STEP III number 13

MI of disc and particle is 124b2m+4b2m=6b2m \frac{1}{2}4b^2m+4b^2m=6b^2m
In initial position, extension of the string is
Unparseable latex formula:

\{pi}b


So elastic energy stored in the string is kmgπb2 \frac{kmg\pi b}{2}
P reaches C if this is greater than the gain in PE of the system if P reaches C
i.e. if kmgπb2>2bmgk>4bmgmgπb=4π \frac{kmg \pi b}{2}>2bmg \Rightarrow k > \frac {4bmg}{mg \pi b}= \frac {4}{ \pi} so since we are given that k>4π k> \frac {4}{\pi} it follows that P does reach C.
The system will have KE at this point of kmgπb22bmg6b2mω2=kmgπb22bmg \frac{kmg\pi b}{2}-2bmg \Rightarrow6b^2m \omega^2=\frac{kmg \pi b}{2}-2bmg
I.e. 3bω2=12(kgπ4g)ω2=g(kπ4)63b \omega^2=\frac{1}{2}(kg \pi-4g)\Rightarrow \omega^2= \frac{g(k\pi-4)}{6}
Resolving radially for particle at Q, if R R is the reaction of the disc on Q we have mgR=2mω2b mg-R=2m\omega^2b
R=m(g2bω2)=m(gg(kπ4)3)=mg3(7kπ) \Rightarrow R=m(g-2b\omega^2)=m\left(g-\frac{g(k\pi-4)}{3}\right)=\frac{mg}{3}(7-k\pi)
Reaction on axis consistsn of ca force supporting the weight of the disc plus the force required to cause particle to have circular motion, i.e. m+mg3(7kπ)=mg3(10kπ)m+\frac{mg}{3}(7-k\pi)=\frac{mg}{3}(10-k\pi) as required
(edited 12 years ago)
STEP II number 5(second part)
A1=A iff w=z and x=y=0 \text{A}^{-1}= \text{A iff } w=z \text { and } x=y=0
So all elements of the form (x00x) \begin{pmatrix} x & 0\\ 0 & x \end {pmatrix}
(abcd)\begin{pmatrix} a & b\\c & d \end{pmatrix} has order 2 if a2+bc=bc+d2 and ab+bd=ac+cd with also adbc=1a^2+bc=bc+d^2 \text{ and }ab+bd=ac+cd \text{ with also }ad-bc=1

i.e. b=c=0 and a2=d2=1 with ad=1 i.e. (1001) or (1001) \text{i.e. }b=c=0 \text{ and }a^2=d^2=1 \text{ with } ad=1 \text{ i.e. } \begin{pmatrix} 1 & 0\\ 0 & 1 \end{pmatrix} \text{ or }\begin{pmatrix} -1 & 0\\0 & -1 \end{pmatrix}
 or if b,c0 then we must have a+d=0,bc=1 and bc=1 (contradiction) \text{ or if }b,c \not=0 \text{ then we must have }a+d=0,bc=1 \text{ and }bc=-1 \text{ (contradiction) }

So we only have the two elements given above\text{So we only have the two elements given above} .
If A =(wxyz) has order 3 then A1=A2\text{If A }=\begin{pmatrix} w & x \\ y & z \end{pmatrix} \text{ has order 3 then A}^{-1}=\text{A}^2
Unparseable latex formula:

\text{ so }\dfrac{1}{wz-xy}\begin{pmatrix}z & -x\\-y & w\end{pmatrix}}=\begin{pmatrix}w^2+xy & wx+xz \\wy+yz & xy+z \end{pmatrix}


zwzxy=w2+xy ; ywzxy=wx+xz ;ywzxy=wy+yz and wwzxy=xy+y2\Rightarrow\dfrac{z}{wz-xy}=w^2+xy\text{ ; }\dfrac{-y}{wz-xy}=wx+xz\text{ ;}\dfrac{-y}{wz-xy}=wy+yz \text{ and }\dfrac{w}{wz-xy}=xy+y^2
x=wx+xz and y=wy+yzx=y=0 or 1=w+z-x=wx+xz \text{ and }-y=wy+yz\Rightarrow x=y=0 \text{ or }-1=w+z
but x=y=0z=w2w=z=1 and A is the identity matrix\text{but }x=y=0\Rightarrow z=w^2 \Rightarrow w=z=1 \text{ and A is the identity matrix}
Hence we must have 1+w+z=0\text{Hence we must have }1+w+z=0
One such element is(ω00ω2) where ω is a complex cube root of unity \text{One such element is}\begin{pmatrix}\omega & 0\\0 & \omega^2 \end{pmatrix} \text{ where }\omega \text{ is a complex cube root of unity}
STEP I number 6
I'm a beginner at using latex so I hope there are not too many mistakes.

Let P be the point (θ,f(θ)) and Q ((θ+δθ),(f(θ+δθ)) in diagram below\text{Let P be the point }(\theta,\text{f}(\theta)) \text{ and Q }((\theta+\delta\theta),(\text{f}(\theta+\delta\theta))\text{ in diagram below}
AB=δθ and the gradient at P is f/(θ) so RS=f/(θ)δθ\text{AB}=\delta\theta \text{ and the gradient at P is f}^/(\theta) \text{ so RS}=\text{f}^/(\theta)\delta\theta
Unparseable latex formula:

\text{If }\theta\text{ is small then SQ }\approx RS}


f(θ+δθ))f(θ)+f/(θ)δθ\Rightarrow\text{f}(\theta + \delta \theta))\approx\text{f}(\theta)+\text{f}^/(\theta)\delta\theta
With reference to the diagram on the question paper let D be the[br] foot of the perpendicular from C to AB then if BD=x\text{With reference to the diagram on the question paper let D be the}[br]\text{ foot of the perpendicular from C to AB then if BD}=x
we have h=xtan(θ+ϕ)=(a+x)tanθ\text{we have }h=x\tan(\theta+\phi)=(a+x)\tan \theta
f(θ)=tanθf/(θ)=sec2θ=(1+tan2θ)\text{f}(\theta)=\tan \theta \Rightarrow\text{f}^/(\theta)=\sec^2\theta=(1+\tan^2 \theta)
if h is very large then ϕ will be small so by the above resulttan(θ+ϕ)tan(θ+ϕsec2θ)\text{if }h\text{ is very large then }\phi \text{ will be small so by the above result}\tan (\theta+ \phi)\approx\tan (\theta+\phi\sec^2 \theta)
so h=x(tanθ+ϕsec2θ)=atanθ+xtanθ\text{so }h=x(\tan \theta+\phi\sec^2 \theta)=a\tan \theta+x\tan \theta
i.e. x=atanθϕsec2θ\text{i.e. }x=\dfrac{a\tan \theta}{\phi\sec^2 \theta}
ϕ  very small hxtanθ \phi \ \mathrm{\ very\ small\ } \rightarrow h \approx x\tan\theta
h=atan2θϕsec2θ=asin2θϕ as required\Rightarrow h=\dfrac{a \tan^2 \theta}{\phi\sec^2 \theta}=\dfrac{asin^2 \theta}{\phi}\text{ as required}
AC=hsinθ=asinθϕ\text{AC}=\dfrac{h}{\sin \theta}=\dfrac{a\sin \theta}{\phi}
ddϕ(AC)=asinθϕ2approx error in AC is =asinθϕ2δϕ\dfrac{d}{d\phi}\text{(AC)}=-\dfrac{a\sin \theta}{\phi^2}\Rightarrow\text{approx error in AC is }=\dfrac{a\sin \theta}{\phi^2}\delta\phi
the error when we double a will thus be 2asinθ(2ϕ)2δϕ\text{the error when we double }a\text{ will thus be }-\dfrac{2a\sin \theta}{(2\phi)^2}\delta\phi
since doubling a will double ϕ since h is constant\text{since doubling }a\text{ will double }\phi\text{ since }h\text{ is constant}
hence, ratio of errors is 12 so approximate error is halved by doubling a\text{hence, ratio of errors is }\dfrac{1}{2}\text{ so approximate error is halved by doubling }a
(edited 10 years ago)
Reply 197
Original post by brianeverit
STEP I number 6
I'm a beginner at using latex so I hope there are not too many mistakes.


You don't need to put everything in latex tags. You can leave the text outside. Looks good otherwise :smile: Keep up the good work.
Original post by SimonM
...

STEP II Q15
P(n)=number of ways of falling on those numbers times (12)n(\frac{1}{2})^n
let a +ve step=i and a -ve step=j.
So:P(n)=P(ΣiΣj=2,3,4,5)P(n)=P(\Sigma i-\Sigma j =2,3,4,5) where Σi+Σj=n[br]Σj=nΣiΣiΣj=2Σin\Sigma i+\Sigma j =n[br]\therefore \Sigma j = n- \Sigma i \Rightarrow \Sigma i-\Sigma j = 2\Sigma i -n
let n=5:
P(5)=P(2Σi5=3,5)P(5)=P(2\Sigma i -5 =3,5) We can omit 2 and 4 because even minus odd is odd.
So Σi=5,4\Sigma i=5,4
no. of ways of getting 5is =1
no. of ways of getting 4js =5 choose 4=5
so, number of ways of falling on 2,3,4,5=6.
Therefore P(5)=6/32=3/16 P(5)=6/32=3/16 as required
P(6)=P(2Σi6=2,4)P(6)=P(2 \Sigma i -6=2,4)
occurs when Σi=5,4\Sigma i=5,4
no. of ways of getting 5is =6 choose 5 =6
no. of ways of getting 4js =6 choose 4=15
so, number of ways of falling on 2,3,4,5=21.
therefore P(6)=21126=2164P(6)=21 \frac{1}{2^6}=\frac{21}{64} as required
P(2k)=P(2Σi2k)=2,4P(2k)=P(2 \Sigma i -2k)=2,4 so Σi=k+1,k+2\Sigma i=k+1,k+2
no. of ways of getting (k+1)is =2k choose k+1
no. of ways of getting (k+2)js =2k choose k+2
so, number of ways of falling on 2,3,4,5=(2kk+1)+(2kk+2)=2k!(k1)!(k+1)!+2k!(k2)!(k+2)!=(2k+1)!(k+2)!(k1)!=(2k+1k1)\begin{pmatrix} 2k \\ k+1\end{pmatrix} + \begin{pmatrix} 2k \\ k+2\end{pmatrix}=\frac{2k!}{(k-1)!(k+1)!} + \frac{2k!}{(k-2)!(k+2)!} =\frac{(2k+1)!}{(k+2)!(k-1)!}=\begin{pmatrix} 2k+1 \\ k-1\end{pmatrix}
so P(2k)=(2k+1k1)(12)2kP(2k)=\begin{pmatrix} 2k+1 \\ k-1\end{pmatrix}(\frac{1}{2})^{2k} as required.

P(2k+1)=P(2Σi(2k+1))=3,5P(2k+1)=P(2 \Sigma i -(2k+1))=3,5so Σi=k+2,k+3\Sigma i=k+2,k+3
no. of ways of getting (k+2)is =2k+1 choose k+2
no. of ways of getting (k+3)js =2k choose k+2
Adding these two together we get:
(2k+1)!(k1)!(k+2)!+(2k+1)!(k2)!(k+3)!=(2k+2)!(k1)!(k+3)!=(2k+2k+3) \frac{(2k+1)!}{(k-1)!(k+2)!} + \frac{(2k+1)!}{(k-2)!(k+3)!}=\frac{(2k+2)!}{(k-1)!(k+3)!}=\begin{pmatrix} 2k+2 \\ k+3\end{pmatrix}
So, P(2k+1)=(2k+2k+3)(12)2k+1P(2k+1)=\begin{pmatrix} 2k+2 \\ k+3\end{pmatrix} (\frac{1}{2})^{2k+1} .
Now, it seems reasonable to assume that, as s gets bigger, P(s) gets smaller and so that maximums will occur at "stationary points" where either
P(2k+2)P(2k)=1\frac{P(2k+2)}{P(2k)}=1
or
P(2k+3)P(2k+1)=1\frac{P(2k+3)}{P(2k+1)}=1
Solving the first case:
P(2k+2)P(2k)=4k2+10k+64k2+12k=16=2kk=3S=6,8\frac{P(2k+2)}{P(2k)}=\frac{4k^2+10k+6}{4k^2+12k}=1\Rightarrow 6=2k \Rightarrow k=3 \Rightarrow S=6,8
Similarly for the second case:
P(2k+3)P(2k+1)=4k2+14k+124k2+16k=112=2kk=6S=13,15\frac{P(2k+3)}{P(2k+1)}=\frac{4k^2+14k+12}{4k^2+16k}=1 \Rightarrow 12=2k \Rightarrow k=6 \Rightarrow S=13,15
Notice that P(6)>P(13) and so the max values will occur at S=6,8S=6,8
and, if I remember correctly, this is confirmed by a spreadsheet I made.
(edited 12 years ago)
Original post by SimonM
You don't need to put everything in latex tags. You can leave the text outside. Looks good otherwise :smile: Keep up the good work.


How do we get an approximately equals sign in latex?

Latest

Trending

Trending