The Student Room Group

1987 Specimen STEP solutions thread

Scroll to see replies

Original post by brianeverit
There is a solutions thread for 1987 with ALL questions answered.


this is the specimen paper rather than the actual one.
Original post by ben-smith
this is the specimen paper rather than the actual one.


Apologies, I didn't read carefully enough.
Incidentall;y, several of these questions are included in Siklos's A.P.I.M. as follows
Paper I /6 APIM No.5
Paper II/13 APIM No.9, II/2 APIM No. 16 II/16 APIM No. 23
Paper III/13 APIM No. 24 III/14 APIM No. 26 III/11 APIM No. 31
(edited 10 years ago)
Specimen.I.16
0f(t)dt=1 so 0112dt+1ke2tdt=1\int_0^{\infty}f(t)dt=1\mathrm{\ so\ }\int_0^1 \frac{1}{2}dt+\int_1^{\infty}ke^{-2t}dt=1
i.e. [t2]01+k[12e2t]1=112+k2e2=1k=e2[\frac{t}{2}]_0^1+k[-\frac{1}{2}e^{-2t}]_1^{\infty}=1\Rightarrow \frac{1}{2}+\frac{k}{2}e^{-2}=1 \Rightarrow k=e^2
Unparseable latex formula:

E[T]=\int_0^1 \frac{t}{2}dt+e^2\int_1^{\infty}te^{-2t}dt =[\frac{t^2}{4}]_0^1+e^2[-\frac{t}{2}e^{-2t}]_1^{\infty}+e^2\int_1^{\infty}\frac{1}{2}e^{-2t}dt=\frac{1}{4}+\freac{1}{2}+e^2[-\frac{1}{4}e^{-2t}=\frac{1}{4}+ \frac{1}{2}+ \frac{1}{4}=1


F(t)=0tf(x)dx=0t12dx=t2 for 0t<1F(t)= \int_0^t f(x)dx= \int_0^t \frac{1}{2}dx= \frac{t}{2} \mathrm{\ for\ }0\leq t<1
And F(t)=12+1te22xdx=112e22t for t>1 F(t)=\frac{1}{2}+\int_1^te^{2-2x}dx=1-\frac{1}{2}e^{2-2t} \mathrm{\ for\ }t>1
If P(n) P(n) is the probability of spending n 10 pence pieces then
P(1)=F(0.5)=14, P(2)=F(1)F(0.5)=14 P(1)=F(0.5)=\frac{1}{4},\ P(2)=F(1)-F(0.5)=\frac{1}{4}
P(3)=F(1.5)F(1)=112e112=12(11e) P(3)=F(1.5)-F(1)=1-\frac{1}{2}e^{-1}-\frac{1}{2}=\frac{1}{2}(1-\frac{1}{e})
And in general P(n)=F(n/2)F((n1)/2)=12[(11en/21e(n1)/2] P(n)=F(n/2)-F((n-1)/2)=\frac{1}{2}[(1-\frac{1}{e^n/2}-\frac{1}{e^{(n-1)/2}}]
E(C)=10n=0nP(n)=10[14+2×14+3×12(11e)+4×12(1e1e2)+5×12(1e21e3)+...]E(C)=10 \sum_{n=0}^\infty nP(n)=10\left[\frac{1}{4}+2\times\frac{1}{4}+ 3 \times \frac{1}{2}(1- \frac{1}{e})+4 \times \frac{1}{2}(\frac{1}{e}- \frac{1}{e^2})+5 \times \frac{1}{2}(\frac{1}{e^2}- \frac{1}{e^3})+...\right]
=10[14+12+32+12(e1+e2+e3+...)]=10[94+12(e11e1)]=10\left[\frac{1}{4}+\frac{1}{2}+\frac{3}{2}+\frac{1}{2}\left(e^{-1}+e^{-2}+e^{-3}+...\right)\right]=10\left[\frac{9}{4}+\frac{1}{2}\left( \frac{e^{-1}}{1-e^{-1}}\right)\right]
=2212+52×1e1=2212+5e1=22\frac{1}{2}+\frac{5}{2}\times\frac{1}{e-1}=22\frac{1}{2}+\frac{5}{e-1} as required
This result assumes that all calls are multiples of 10 minutes and of course, most will not be exactly. Hence it will differ from average length of call times 20p
(edited 10 years ago)
Original post by ben-smith
STEP I Q2
[br]PB=x2+h2,PC=x2+(d+h)2[br]PB=\sqrt{x^2+h^2},PC=\sqrt{x^2+(d+h)^2}
Cosine rule:
Unparseable latex formula:

cos\theta=\dfrac{d^2-x^2-h^2-x^2-(h+d)^2}{-2\sqrt{(x^2+h^2)(x^2+(d+h)^2)}}[br]\Rightarrow Tan\theta=\frac{\sqrt{1-cos^2\theta}}{cos\theta}[br]=\dfrac{\sqrt{(x^2+h^2)(x^2+(d+h)^2)-(x^2+hd+x^2)^2}}{x^2+hd+h^2}}[br]=\dfrac{\sqrt{x^4+x^2h^2+2x^2hd+x^2d^2+h^2x^2+h^4+2h^3d+h^2d^2-x^4-2x^2hd-2x^2h^2-h^2d^2-2h^3d-h^4}}{x^2+hd+h^2}[br]=\dfrac{xd}{x^2+hd+h^2}


Note that max[θ]max[Tanθ]max[\theta] \Rightarrow max[Tan\theta]
so we require an x such that ddx[Tanθ]=0\frac{d}{dx}[Tan\theta]=0. (obviously will be a max because min occurs a x=infinity).
ddx[Tanθ]=d(h2+hdx2)(x2+hd+h2)2[br]x2=hd+h2x=h(h+d)\frac{d}{dx}[Tan\theta]=\frac{d(h^2+hd-x^2)}{(x^2+hd+h^2)^2}[br]\Rightarrow x^2=hd+h^2 \Rightarrow x=\sqrt{h(h+d)}


tan theta is found more easily by noting that theta=angle APC minus angle APB and using tangent addition theorem.
Original post by abra-cad-abra
how did you know that that first angle was pi/7. i just guessed it as its a 7sided shape so makes sense and looking at the answer i was working towards it seemed right


Produce EQ and use exterior angle of triangle theorem.
Original post by ben-smith
STEP I Q7
z=1+e2iα=1+cos2α+isin2α[br]z=(1+cos2α)2+(sin2α)2=2+2cosα=2cosα[br]arg(z)=arctan(sin2α1+cos2α)=arctan(Tan(2α/2))=α z=1+e^{2i\alpha}=1+cos2\alpha+isin2\alpha[br]\Rightarrow |z|=\sqrt{(1+cos2\alpha)^2+(sin2\alpha)^2}=\sqrt{2+2cos\alpha}=2cos\alpha[br]arg(z)=arctan(\dfrac{sin2\alpha}{1+cos2 \alpha})=arctan(Tan(2\alpha/2))= \alpha

Σr=0n(nr)sin(2r+1)=[Σ(nr)ei(2r+1)α]=[eiαΣ(nr)ei2rα][br]=[eiα(1+eiα)n]=[eiα(2cosαeiα)n][br]=2ncosnα[ei(n+1)α]=2ncosnαsin(n+1)α[br]\displaystyle \Sigma^{n}_{r=0} \displaystyle \binom{n}{r} sin(2r+1)=\Im[\displaystyle \Sigma \displaystyle \binom{n}{r} e^{i(2r+1)\alpha}]=\Im[e^{i\alpha} \displaystyle \Sigma \displaystyle \binom{n}{r} e^{i2r\alpha}][br]=\Im[e^{i\alpha}(1+e^i\alpha)^n]=\Im[e^{i\alpha}(2cos\alpha e^{i\alpha})^n][br]=2^n cos^n\alpha\Im[e^{i(n+1)\alpha}]=2^n cos^n\alpha sin(n+1)\alpha[br]


I don't understand your summation.
Isn't Σr=0n(nr)e2irα=(1+e2iα)n not (1+eiα)n\displaystyle \Sigma^n_{r=0} \displaystyle \binom{n}{r}e^{2ir\alpha}=(1+e^{2i\alpha})^n \mathrm{\ not\ }(1+e^{i\alpha})^n
though there seems to be a compensating error in the next line and I agree with the final solution.
(edited 10 years ago)
Original post by ben-smith
STEP I Q7
z=1+e2iα=1+cos2α+isin2α[br]z=(1+cos2α)2+(sin2α)2=2+2cosα=2cosα[br]arg(z)=arctan(sin2α1+cos2α)=arctan(Tan(2α/2))=α z=1+e^{2i\alpha}=1+cos2\alpha+isin2\alpha[br]\Rightarrow |z|=\sqrt{(1+cos2\alpha)^2+(sin2\alpha)^2}=\sqrt{2+2cos\alpha}=2cos\alpha[br]arg(z)=arctan(\dfrac{sin2\alpha}{1+cos2 \alpha})=arctan(Tan(2\alpha/2))= \alpha

Σr=0n(nr)sin(2r+1)=[Σ(nr)ei(2r+1)α]=[eiαΣ(nr)ei2rα][br]=[eiα(1+eiα)n]=[eiα(2cosαeiα)n][br]=2ncosnα[ei(n+1)α]=2ncosnαsin(n+1)α[br]\displaystyle \Sigma^{n}_{r=0} \displaystyle \binom{n}{r} sin(2r+1)=\Im[\displaystyle \Sigma \displaystyle \binom{n}{r} e^{i(2r+1)\alpha}]=\Im[e^{i\alpha} \displaystyle \Sigma \displaystyle \binom{n}{r} e^{i2r\alpha}][br]=\Im[e^{i\alpha}(1+e^i\alpha)^n]=\Im[e^{i\alpha}(2cos\alpha e^{i\alpha})^n][br]=2^n cos^n\alpha\Im[e^{i(n+1)\alpha}]=2^n cos^n\alpha sin(n+1)\alpha[br]


I don't understand your summation.
Isn't Σr=0n(nr)e2irα=(1+e2iα)n not (1+eiα)n\displaystyle \Sigma^n_{r=0} \displaystyle \binom{n}{r}e^{2ir\alpha}=(1+e^{2i\alpha})^n \mathrm{\ not\ }(1+e^{i\alpha})^n
Original post by bogstandardname
Another solution for an uncompleted question, STEP I Question 8 is attached


You cannot have the variable in your integral as one of the limits.
Original post by Farhan.Hanif93

STEP I - Q11



You cannot assume that the friction force on the incline is νR \nu Rsince friction is not limiting there.
Original post by bogstandardname
Another solution for an uncompleted question, STEP I Question 8 is attached


Why bother using an integrating factor when the differential equation is variable separable?
Original post by brianeverit
Specimen.I.16
0f(t)dt=1 so 0112dt+1ke2tdt=1\int_0^{\infty}f(t)dt=1\mathrm{\ so\ }\int_0^1 \frac{1}{2}dt+\int_1^{\infty}ke^{-2t}dt=1
i.e. [t2]01+k[12e2t]1=112+k2e2=1k=e2[\frac{t}{2}]_0^1+k[-\frac{1}{2}e^{-2t}]_1^{\infty}=1\Rightarrow \frac{1}{2}+\frac{k}{2}e^{-2}=1 \Rightarrow k=e^2
Unparseable latex formula:

E[T]=\int_0^1 \frac{t}{2}dt+e^2\int_1^{\infty}te^{-2t}dt =[\frac{t^2}{4}]_0^1+e^2[-\frac{t}{2}e^{-2t}]_1^{\infty}+e^2\int_1^{\infty}\frac{1}{2}e^{-2t}dt=\frac{1}{4}+\freac{1}{2}+e^2[-\frac{1}{4}e^{-2t}=\frac{1}{4}+ \frac{1}{2}+ \frac{1}{4}=1


F(t)=0tf(x)dx=0t12dx=t2 for 0t<1F(t)= \int_0^t f(x)dx= \int_0^t \frac{1}{2}dx= \frac{t}{2} \mathrm{\ for\ }0\leq t<1
And F(t)=12+1te22xdx=112e22t for t>1 F(t)=\frac{1}{2}+\int_1^te^{2-2x}dx=1-\frac{1}{2}e^{2-2t} \mathrm{\ for\ }t>1
If P(n) P(n) is the probability of spending n 10 pence pieces then
P(1)=F(0.5)=14, P(2)=F(1)F(0.5)=14 P(1)=F(0.5)=\frac{1}{4},\ P(2)=F(1)-F(0.5)=\frac{1}{4}
P(3)=F(1.5)F(1)=112e112=12(11e) P(3)=F(1.5)-F(1)=1-\frac{1}{2}e^{-1}-\frac{1}{2}=\frac{1}{2}(1-\frac{1}{e})
And in general P(n)=F(n/2)F((n1)/2)=12[(11en/21e(n1)/2] P(n)=F(n/2)-F((n-1)/2)=\frac{1}{2}[(1-\frac{1}{e^n/2}-\frac{1}{e^{(n-1)/2}}]
E(C)=10n=0nP(n)=10[14+2×14+3×12(11e)+4×12(1e1e2)+5×12(1e21e3)+...]E(C)=10 \sum_{n=0}^\infty nP(n)=10\left[\frac{1}{4}+2\times\frac{1}{4}+ 3 \times \frac{1}{2}(1- \frac{1}{e})+4 \times \frac{1}{2}(\frac{1}{e}- \frac{1}{e^2})+5 \times \frac{1}{2}(\frac{1}{e^2}- \frac{1}{e^3})+...\right]
=10[14+12+32+12(e1+e2+e3+...)]=10[94+12(e11e1)]=10\left[\frac{1}{4}+\frac{1}{2}+\frac{3}{2}+\frac{1}{2}\left(e^{-1}+e^{-2}+e^{-3}+...\right)\right]=10\left[\frac{9}{4}+\frac{1}{2}\left( \frac{e^{-1}}{1-e^{-1}}\right)\right]
=2212+52×1e1=2212+5e1=22\frac{1}{2}+\frac{5}{2}\times\frac{1}{e-1}=22\frac{1}{2}+\frac{5}{e-1} as required
This result assumes that all calls are multiples of 10 minutes and of course, most will not be exactly. Hence it will differ from average length of call times 20p


Why is P(1) =1/4 . You have to pay 10p at beginning of the call. shouldnt it p(2)=1/4 and p(1)=1 ?
For Q15 I got E(C)=0 by symmetry and Var (C)= 8.5

Then for the context defining new random variable K as 36 independent random variables from C. So E(K)=0 and Var(K)=306.

Then would i use the normal distribution definition of outlier to determine if she should believe it to be a mistake?

Original post by brianeverit
?
Original post by Yung_ramanujan
Why is P(1) =1/4 . You have to pay 10p at beginning of the call. shouldnt it p(2)=1/4 and p(1)=1 ?


P(1) is the probability that the call lasts no more than half a minute.
Specimen Paper I. Questions 10 and 15.
These seem to be the only two without solutions so here are my attempts.
Paper II
Question 1
3x2+2(a+b)x+abx3+(a+b)x2+abx=3x2+2(a+b)x+abx(x+a)(x+b)=Ax+Bx+a+Cx+b \frac{3x^2+2(a+b)x+ab}{x^3+(a+b)x^2+abx}=\frac{3x^2+2(a+b)x+ab}{x(x+a)(x+b)}=\frac{A}{x}+\frac{B}{x+a}+\frac{C}{x+b}
Unparseable latex formula:

[\impliesA(x+a)(x+b)+Bx(x+b)+Cx(x+a)=3x^2+2(a+b)x+ab


x=0    abA=ab    A=1x=0 \implies abA=ab \implies A=1
x=a    aB(ba)=3a22a22ab+ab    B=a2aba2ab=1x=-a \implies -aB(b-a)=3a^2-2a^2-2ab+ab \implies B=\frac{a^2-ab}{a^2-ab}=1
Comparing coefficients of x2, A+B+C=3    C=1x^2,\ A+B+C=3\implies C=1
So3x2+2(a+b)x+abx3+(a+b)x2+abx=1x+1x+a+1x+b \frac{3x^2+2(a+b)x+ab}{x^3+(a+b)x^2+abx}=\frac{1}{x}+\frac{1}{x+a}+\frac{1}{x+b} There are two special cases to consider, a=b and a+b=0a=b \mathrm{\ and\ }a+b=0
a=b    f(x)=3x2+4ax+a2x3+2ax2+a2x=(3x+a)(x+a)x(x+a)2=1x+2x+aa=b \implies \mathrm{f}(x)=\frac{3x^2+4ax+a^2}{x^3+2ax^2+a^2x}=\frac{(3x+a)(x+a)}{x(x+a)^2}=\frac{1}{x}+\frac{2}{x+a} (Cover up rule)
a+b=0    b=a    f(x)=3x2a2x3a2x=3x2a2x(x+a)(xa)=1x+1x+a+1xaa+b=0 \implies b=-a \implies \mathrm{f}(x)=\frac{3x^2-a^2}{x^3-a^2x}=\frac{3x^2-a^2}{x(x+a)(x-a)} =\frac{1}{x}+\frac{1}{x+a}+\frac{1}{x-a}
If f(x)=1 with x,a,b, all positive integers then(x)=1 \mathrm{\ with\ }x,a,b, \mathrm{\ all\ positive\ integers\ then}
Case 1.
Unparseable latex formula:

a\neqb,

without loss of generality we may assume a<b so x+b>x+a>xa<b \mathrm{\ so\ }x+b>x+a>x
Hence, 1x>1x+a>1x+b    1x>13    x<3 i.e. x=2\frac{1}{x}>\frac{1}{x+a}>\frac{1}{x+b} \implies \frac{1}{x}>\frac{1}{3} \implies x<3 \mathrm{\ i.e.\ }x=2 since we cannot have x=1x=1
So 12+a+12+b=12 \frac{1}{2+a}+\frac{1}{2+b}= \frac{1}{2} with a,b a,b integers, so a=1,b=4a=1,b=4
Case 2. a=b    1x+2x+a=1a=b \implies \frac{1}{x}+\frac{2}{x+a}=1
Again we must have x=2 so 22+a=12    a=2x=2 \mathrm{\ so\ } \frac{2}{2+a}=\frac{1}{2} \implies a=2
So the only possible positive integer solutions are x=2,a=1,b=4 and x=2,a=b=2x=2,a=1,b=4 \mathrm{\ and\ } x=2,a=b=2
(edited 10 years ago)
Question 2
yzbc=yz(y2xz)(z2xy)=yz(y2z2)+x(yz)=1x+y+z \frac{y-z}{b-c}=\frac{y-z}{(y^2-xz)-(z^2-xy)}=\frac{y-z}{(y^2-z^2)+x(y-z)}=\frac{1}{x+y+z}
Similarly, by symmetry,
Unparseable latex formula:

\frac{z-x}{c-a}=\frac{x-y}{a-b}=\frtac{1}{x+y+z}


(yz)2+(zx)2+(xy)2=(bc)2+(ca)2+(ab)2(x+y+z)2(y-z)^2+(z-x)^2+(x-y)^2=\frac{(b-c)^2+(c-a)^2+(a-b)^2}{(x+y+z)^2}
Unparseable latex formula:

\implies (x+y+z)^2=\frac{2(a^2+b^2+c^2)-2(ab+bc+ca)}[2(x^2+y^2+z^2)-2(xy+yz+zx)}=\frac{a^2+b^2+c^2-bc-ca-ab}{(x^2-yz)+(y^2-zx)+(z^2-xy)}=\frac{a^2+b^2+c^2-bc-ca-ab}{a+b+c}=\Delta^2


Hence, x+y+z=Δx+y+z=\Delta as required.
yz=bcΔ    y=z+bcδy-z=\frac{b-c}{\Delta}\implies y=z+\frac{b-c}{\delta} and similarly x=z+acδx=z+\frac{a-c}{\delta}
Substituting in x+y+z=δx+y+z=\delta gives 3z+acδ+bcδ=δ    z=Δ2(ac)(bc)3Δ=a2+b2+c2bccaaba+b+cab+2c3Δ3z+\frac{a-c}{\delta}+\frac{b-c}{\delta}=\delta \implies z=\frac{\Delta^2-(a-c)-(b-c)}{3\Delta}=\frac{\frac{a^2+b^2+c^2-bc-ca-ab}{a+b+c}-a-b+2c}{3\Delta}
=(a2+b2+c2bccaab)(a+b+c)(a+b2c)3Δ(a+b+c)=3c23ab3Δ(a+b+c)=c2abΔ(a+b+c)=\frac{(a^2+b^2+c^2-bc-ca-ab)-(a+b+c)(a+b-2c)}{3\Delta(a+b+c)}=\frac{3c^2-3ab}{3\Delta(a+b+c)}=\frac{c^2-ab}{\Delta(a+b+c)}
And, by symmetry, x=a2bcΔ(a+b+c) and y=b2caΔ(a+b+c)x=\frac{a^2-bc}{\Delta(a+b+c)} \mathrm{\ and\ }y=\frac{b^2-ca}{\Delta(a+b+c)}
(edited 10 years ago)
Question 3
To prove
Unparseable latex formula:

(\cos\theta+i\sin\theta)^n=\cosn\theta+i\sin n\theta


Statement is obviously true for n=1n=1 so assume true for n=kn=k
So (cosθ+isinθ)k=coskθ+isinkθ(\cos\theta+i\sin\theta)^k=\cos k\theta+i \sin k\theta hence
(cosθ+isinθ)k+1=(coskθ+isinkθ)(cosθ+isinθ) (\cos \theta+i\sin \theta)^{k+1}=(\cos k\theta+i\sin k\theta)(\cos\theta+i \sin\theta)
Unparseable latex formula:

=(\cos k\theta \cos \theta-\sin k\theta \sin\theta)+i(\cos k\theta \sin\theta+\sin k\thewta \cos \theta)


=cos(k+1)θ+isin(k+1)θ=\cos(k+1)\theta+i\sin(k+1)\theta so true for n=k     true for n=k+1n=k\implies \mathrm{\ true\ for\ }n=k+1 and hence true for all integer values of nn by induction.
Let z=cosθ+isinθz=\cos\theta+i \sin\theta then
Unparseable latex formula:

x^3\cos3y+2x^2 \cos2y+2x\cosy=\mathrm{\ Re}((xz)^3+2(xz)^2+2xz) \mathrm{\ and\ }x^3\sin3y+2x^2\sin2y+2x\siny= \mathrm{\ Im}((xz)^3+2(xz)^2+2xz)


Hence ((xz)3+2(xz)2+2xz=1    ((xz)3+2(xz)2+2xz+1=0    (xz+1)(x2z2xz+1)=0    xz=1or12(1±3)\mathrm{Hence\ }((xz)^3+2(xz)^2+2xz=-1\implies ((xz)^3+2(xz)^2+2xz+1=0 \implies (xz+1)(x^2z^2-xz+1)=0 \implies xz=1 or \frac{1}{2}(1\pm\sqrt3)
Clearly we must have x=1    x=±1,z=1 or 12±32|x|=1 \implies x=\pm1,z=-1 \mathrm{\ or\ }\frac{1}{2}\pm\frac{\sqrt3}{2}
x=1,z=1    y=(2k+1)πx=1,z=-1\implies y=(2k+1)\pi
x=1,z=12±32    y=(2kπ±13)πx=1,z=\frac{1}{2}\pm\frac{\sqrt3}{2} \implies y=(2k\pi\pm\frac{1}{3})\pi
x=1,z=1    y=(2k+1)πx=-1,z=1\implies y=(2k+1)\pi
x=1,z=(12±32    y=(2k±23)πx=-1,z=-(\frac{1}{2}\pm\frac{\sqrt3}{2} \implies y=(2k\pm\frac{2}{3})\pi
So solutions are x=1,y=(2k+1)π,x=1,y=(2k±13)π,\mathrm{So\ solutions\ are\ } x=1,y=(2k+1)\pi, x=1,y=(2k\pm\frac{1}{3})\pi,
x=1,y=2kπ, x=1,y=(2k±23)π. x=-1,y=2k\pi,\ x=-1,y=(2k\pm\frac{2}{3})\pi.
(edited 10 years ago)
Paper II
Question 10
10.(i) If A is a toad then he is telling the truth and he is a frog - contradiction, so he is lying and hence must be a frog, and since he said B was a frog then this is also a lie and so B is a toad.
(ii) If C is a frog then his statement is a lie and would therefore be a contradiction. So C must be a toad and since he is telling the truth, D must be a frog.
(iii) If E is a toad then both G and H are toads but they cannot both be telling the truth. So E is a frog and G and H are not both toads which means that G is telling a lie and hence is a frog whilst H is telling the truth and hence is a toad.
(iv) I, J and K cannot all be frogs as otherwise I would be telling the truth. So I is a frog
Either J or K must be a toad. If K is a toad and J a frog or J a toad and K a frog then J is telling the truth, hence J must be the toad and K a frog
Question 11
Let A,B denote the particles projected from A and B re3spectively. Since they meet when both are at their greatest height then their maximum heights must be equal.
Max height for A is V2sin245o2g and for B U2sin230o2g\frac{V^2\sin^245^o}{2g} \mathrm{\ and\ for\ B\ }\frac{U^2\sin^230^o}{2g}
So [br]]V2sin245o2g=U2sin230o2g    V24g=U28g    U2=2V2[br]]\frac{V^2\sin^245^o}{2g} =\frac{U^2\sin^230^o}{2g}\implies\frac{V^2}{4g}=\frac{U^2}{8g} \implies U^2=2V^2 as required.
Time to reach maximum height is given by vsinθg\frac{v\sin\theta}{g} so A has traveled a distance
V2sin45ocos45og=V22g and B has traveled U2sin30ocos30og=U234g=V232g\frac{V^2\sin45^o \cos45^o}{g}=\frac{V^2}{2g} \mathrm{\ and\ B\ has\ traveled\ }\frac{U^2\sin30^o\cos30^o}{g}= \frac{U^2\sqrt3}{4g}= \frac{V^2\sqrt3}{2g} hence
Unparseable latex formula:

a=\frac{V^2}{2g}+\frac{V^2\sqrt}{2g}=\frac{V^2}{2g}(1+\sqrt3)

as required.
If particles coalesce on impact then, by conservation of momentum, velocity of combined particle after impact in directionAB,V is given by 2mV=mVcos45omUcos30o    V=V22(13). V' \mathrm{\ is\ given\ by\ }2mV'=mV\cos45^o-mU\cos30^o\implies V'=\frac{V}{2\sqrt2}(1-\sqrt3).
So particle hits ground with vertical velocity V2\frac{V}{\sqrt2} and horizontal velocity V22(31) \frac{V}{2\sqrt2}(\sqrt3-1) so angle to the horizontal is
Unparseable latex formula:

\phi=\tan^{-1}\Left( \frac{V}{\sqrt2} \times \frac{2\sqrt2}{V(\sqrt3-L1)}\Right)=\tan^{-1}\frac{2}{\sqrt3-1}=\tan^{-1}(\sqrt3+1)

as required.
Question 14
MI of disc}=Ma22= \frac{Ma^2}{2} and force acting on it is Mak(ω1ω2) -Mak(\omega_1-\omega_2) at a distance of a2 \frac{a}{2} from the axis
So Ma22dω1dt=Mak(ω1ω2)a2    dω1dt=k(ω1ω2) \frac{Ma^2}{2} \frac{d\omega_1}{dt}=-Mak(\omega_1-\omega_2)\frac{a}{2}\implies \frac{d\omega_1}{dt}=-k(\omega_1-\omega_2)
Similarly, the particle has MI 12(a2)2\frac{1}{2} \left(\frac{a}{2}\right)^2 and is acted on by a force Mak(ω1ω2)Mak(\omega_1-\omega_2)
So Ma28dω2dt=Mak(ω1ω2)    dω2dt=4k(ω1ω2)\frac{Ma^2}{8}\frac{d\omega_2}{dt}=Mak(\omega_1-\omega_2)\implies\frac{d\omega_2}{dt}=4k(\omega_1-\omega_2)
Hence dω2dt=4dω1dt    ω2=4ω1+c\frac{d\omega_2}{dt}=-4\frac{d\omega_1}{dt}\implies \omega_2=4\omega_1+c
ω1=Ω and ω2=0 at t=0    c=4Ω\omega_1=\Omega \mathrm{\ and\ }\omega_2=0 \mathrm{\ at\ }t=0\implies c=4\Omega
So 4ω1+ω2=4Ω 4\omega_1+\omega_2=4\Omega as required.
dω1dt=k(ω1ω2)=kω1+4k(Ωω1)=4kΩ5ω1\frac{d\omega_1}{dt}=-k(\omega_1-\omega_2)=-k\omega_1+4k(\Omega-\omega_1)=4k\Omega-5\omega_1
Separating the variables and integrating we have dω15ω14Ω=kdt\int\frac{d\omega_1}{5\omega_1-4\Omega}=-\int kdt
    15ln(5ω14Ω)=kt+A\implies \frac{1}{5}\ln(5\omega_1-4\Omega)=-kt+A
ω1=Ω at t=0    A=15lnΩ so ln5ω14ΩΩ=5kt[br]    5ω14Ω=Ωe5kt    ω1=Ω5(4+e5kt\omega_1=\Omega \mathrm{\ at\ }t=0 \implies A=\frac{1}{5}\ln\Omega \mathrm{\ so\ }\ln\frac{5\omega_1-4\Omega}{\Omega}=-5kt[br] \implies 5\omega_1-4\Omega=\Omega e^{-5kt} \implies \omega_1=\frac{\Omega}{5}(4+e^{-5kt}

Quick Reply

Latest

Trending

Trending