The Student Room Group

2004 a STEP thread...

Scroll to see replies

Daniel Freedman
STEP II, 2004, Question 3

Spoiler



Thanks for that solution, I needed some help for the last curve.
If you multiply the x term to get:(x2+x)(x2)4(x^2+x)(x-2)^4, it's much easier and quicker to differentiate using the chain rule.
Reply 61
STEP I, 2004, Q6

The first part can be done as a coordinate geometry problem, but it ran to several pages when I did it. I found a shorter way using vectors -- I'd appreciate somebody checking it over. Second part is simple.

Spoiler

Reply 62
II/11

Spoiler

2004 STEP I question 6

Let mid-points of BC,CA,AB be D,E,F respectively\text{Let mid-points of }BC,CA,AB \text{ be }D,E,F \text{ respectively}
with usual notation, mid-point of BC is d=12(b+c)\text{with usual notation, mid-point of }BC \text{ is } \mathbf{d}= \dfrac{1}{2}(\mathbf{b}+ \mathbf{c})
So vector equation of line Ad is r=a+λ(12(b+c)a)=(1λ)a+λ2(b+c) \text{So vector equation of line }Ad \text{ is } \mathbf{r}= \mathbf{a}+ \lambda \left( \dfrac{1}{2}( \mathbf{b}+ \mathbf{c})- \mathbf{a} \right)=(1- \lambda) \mathbf{a}+ \dfrac{\lambda}{2}( \mathbf{b}+ \mathbf{c})
similarly for BE we have r=(1μ)b+μ2(a+c)\text{similarly for }BE \text{ we have } \mathbf{r}=(1-\mu) \mathbf{b}+ \dfrac{\mu}{2}(\mathbf{a}+ \mathbf{c})
So at point of intersection we must have (1λ)a+λ2(b+c)=(1μ)b+μ2(a+c) \text{So at point of intersection we must have }(1- \lambda) \mathbf{a}+ \dfrac{\lambda}{2}( \mathbf{b}+ \mathbf{c})=(1- \mu) \mathbf{b}+ \dfrac{\mu}{2}( \mathbf{a}+ \mathbf{c})
equating coefficients of a,b and c we have (1λ)=μ2,λ2=(1μ) and λ2=μ2\text{equating coefficients of } \mathbf{a}, \mathbf{b} \text{ and } \mathbf{c} \text{ we have } (1-\lambda)= \dfrac{\mu}{2},\dfrac{\lambda}{2}=(1- \mu) \text{ and }\dfrac{\lambda}{2}= \dfrac{\mu}{2}
Fron whiuch we obtain λ=μ=23\text{Fron whiuch we obtain } \lambda= \mu = \dfrac{2}{3}
Hence, AD and BE meet at the point (13(p1+p2+p3),13(q1+q2+q3)) \text{Hence, }AD \text{ and }BE \text{ meet at the point }\left( \dfrac{1}{3}(p_1+p_2+p_3),\dfrac{1}{3}(q_1+q_2+q_3)\right)
CF wil have equation r=c+ν2(a+bc) and taking ν=23 gives the same pointCF \text{ wil have equation }\mathbf{r}=\mathbf{c}+ \dfrac{\nu}{2}( \mathbf{a}+ \mathbf{b}- \mathbf{c}) \text{ and taking } \nu= \dfrac{2}{3} \text{ gives the same point}
gradient of AH=q2+q3p2+p3 and gradient of BC=q3q2p3p2 \text{gradient of }AH= \dfrac{q_2+q_3}{p_2+p_3} \text{ and gradient of }BC= \dfrac{q_3-q_2}{p_3-p_2}
so, if they are perpendicular then (q2+q3p2+p30)(q3q2p3p2)=1 \text{so, if they are perpendicular then }\left( \dfrac{q_2+q_3}{p_2+p_30} \right) \left(\dfrac{q_3-q_2}{p_3-p_2} \right)=-1
(q2+q3)(q3q2)=(p2+p3)(p3p2)q32q22=p32p22p22+q22=p32+q32\Rightarrow (q_2+q_3)(q_3-q_2)=(p_2+p_3)(p_3-p_2) \Rightarrow q_3^2-q_2^2=p_3^2-p_2^2 \Rightarrow p_2^2+q_2^2=p_3^2+q_3^2
similarly, if BH and AC are at right angles then p12+q12=p32+q32 \text {similarly, if }BH \text{ and }AC \text{ are at right angles then }p_1^2+q_1^2=p_3^2+q_3^2
 and if both p22+q22=p32+q32 and p12+q12=p32+q32 then clearly p12+q12=p22+q22 \text{ and if both } p_2^2+q_2^2=p_3^2+q_3^2 \text{ and }p_1^2+q_1^2=p_3^2+q_3^2 \text{ then clearly }p_1^2+q_1^2=p_2^2+q_2^2
(q1+q2)(q2q1)=(p1+p2)(p2p1)(q1+q2p1+p2)(q2q1p2p1)=1CH is perpendicular to AB \Rightarrow (q_1+q_2)(q_2-q_1)=(p_1+p_2)(p_2-p_1) \Rightarrow \left( \dfrac{q_1+q_2}{p_1+p_2}\right) \left( \dfrac{q_2-q_1}{p_2-p_1} \right)=-1 \Rightarrow CH\text{ is perpendicular to }AB
(edited 8 years ago)
2004 STEP I question 10

(i)For u>0, d1=v2u26a and d2=v22a(i) \text{For }u>0,\text{ }d_1= \dfrac{v^2-u^2}{6a} \text{ and }d_2= \dfrac{v^2}{2a}
hence, v2u2=6ad1 and v2=2ad22ad2u2=6ad1 or u2=2ad26ad1\text{hence, }v^2-u^2=6ad_1 \text{ and }v^2=2ad_2 \Rightarrow 2ad_2-u^2=6ad_1 \text{ or }u^2=2ad_2-6ad_1
but u2 must be positive so 6ad1<2ad23d1<d2 \text{but }u^2 \text{ must be positive so }6ad_1<2ad_2 \Rightarrow 3d_1<d_2
(ii)if u<0 then distance in negative direction before coming to rest is u26a(ii) \text{if }u<0 \text{ then distance in negative direction before coming to rest is } \dfrac{u^2}{6a}
hence, displacement from starting position after first movement is d1u23a\text{hence, displacement from starting position after first movement is }d_1- \dfrac{u^2}{3a}
so d1u23a=v2u26ad1=u2+v26a and as before d2=y22a \text{so }d_1-\dfrac{u^2}{3a}= \dfrac{v^2-u^2}{6a} \Rightarrow d_1= \dfrac{u^2+v^2}{6a} \text{ and as before }d_2= \dfrac{y^2}{2a}
eliminating v2 we have 2ad2+u2=6ad16ad12ad2>03s1>d2 \text{eliminating }v^2 \text{ we have }2ad_2+u^2=6ad_1 \Rightarrow 6ad_1-2ad_2>0 \Rightarrow 3s_1>d_2
(i)For u>0, d1=v2u26a and d2=v22a(i) \text{For }u>0,\text{ }d_1= \dfrac{v^2-u^2}{6a} \text{ and }d_2= \dfrac{v^2}{2a}
hence, v2u2=6ad1 and v2=2ad22ad2u2=6ad1 or u2=2ad26ad1\text{hence, }v^2-u^2=6ad_1 \text{ and }v^2=2ad_2 \Rightarrow 2ad_2-u^2=6ad_1 \text{ or }u^2=2ad_2-6ad_1
but u2 must be positive so 6ad1<2ad23d1<d2 \text{but }u^2 \text{ must be positive so }6ad_1<2ad_2 \Rightarrow 3d_1<d_2
(ii)if u<0 then distance in negative direction before coming to rest is u26a(ii) \text{if }u<0 \text{ then distance in negative direction before coming to rest is } \dfrac{u^2}{6a}
hence, displacement from starting position after first movement is d1u23a\text{hence, displacement from starting position after first movement is }d_1- \dfrac{u^2}{3a}
so d1u23a=v2u26ad1=u2+v26a and as before d2=y22a \text{so }d_1-\dfrac{u^2}{3a}= \dfrac{v^2-u^2}{6a} \Rightarrow d_1= \dfrac{u^2+v^2}{6a} \text{ and as before }d_2= \dfrac{y^2}{2a}
eliminating v2 we have 2ad2+u2=6ad16ad12ad2>03s1>d2 \text{eliminating }v^2 \text{ we have }2ad_2+u^2=6ad_1 \Rightarrow 6ad_1-2ad_2>0 \Rightarrow 3s_1>d_2
also v2>u22ad2>6ad12ad24ad2>6ad1d2>3d1 hence d2<3d1<2d2 \text{also }v^2>u^2 \Rightarrow 2ad_2>6ad_1-2ad_2 \Rightarrow 4ad_2>6ad_1 \Rightarrow d_2>3d_1 \text{ hence }d_2<3d_1<2d_2
average speed of particle is total distancetotal time and total distance is d1+d2 in each case\text{average speed of particle is } \dfrac{\text{total distance}} {\text{total time}} \text{ and total distance is }d_1+d_2 \text{ in each case}
for u>0, total time is vu3a+va=4vu3a \text{for }u>0, \text{ total time is } \dfrac{v-u}{3a}+ \dfrac{v}{a}= \dfrac{4v-u}{3a}
Unparseable latex formula:

\text{for }u<0 \text{ total time is } \dfrac{u}{3a}+\dfrac{v}{3a} + \dfrac{v}a}= \dfrac{4v+u}{3a}


hence, average speeds are, for u>0,3a(d1+d24vu and for u<0,3a(d1+d2)4v+u \text{hence, average speeds are, for }u>0, \dfrac{3a(d_1+d_2}{4v-u} \text{ and for }u<0, \dfrac{3a(d_1+d_2)}{4v+u}
Clearly 3a(d1+d2)4vu>3a(d1+d2)4v+u since numerator is same but denominator is smaller \text{Clearly } \dfrac{3a(d_1+d_2)}{4v-u}> \dfrac{3a(d_1+d_2)}{4v+u}\text { since numerator is same but denominator is smaller}
i.e. Average speed is greater when u>0 \text{i.e. Average speed is greater when }u>0
(edited 12 years ago)
2004 STEP I question 11

Let AB=BC=6a then AD=2a,AP=3a and BQ=3a \text{Let }AB=BC=6a \text{ then }AD=2a,AP=3a \text{ and }BQ=3a
BA^C=BC^A=60 B\hat{A}C=B\hat{C}A=60^\circ
If ladders do not slip then  \text{If ladders do not slip then }
Resolving horizontally for both ladders FA=FC\text{Resolving horizontally for both ladders }F_A=F_C
Resolving vertically RA+RC=12W \text{Resolving vertically }R_A+R_C=12W
Taking moments about A we have  \text{Taking moments about }A \text{ we have }
7W.2acos60+W.3acos60+4W.9acos60=RC.12acos60 7W.2a \cos {60}+W.3a \cos {60}+4W.9a \cos{60}=R_C.12a \cos{60}
i.e. 12RC=53WRC=5312W\text{i.e. }12R_C=53W \Rightarrow R_C= \dfrac{53}{12}W
hence, RA=12W5312W=9112W \text{hence, }R_A=12W- \dfrac{53}{12}W= \dfrac{91}{12}W
Taking moments about B for AB\text{Taking moments about }B \text{ for }AB
Unparseable latex formula:

6a.F_A \sion{60}=6aR_A\cos{60}-3aW \cos{60}-7W.4a \cos{60}


33FA=3a91W1231Wa12=29Wa4\Rightarrow 3 \sqrt3F_A=3a \dfrac{91W}{12}- \dfrac{31Wa}{12}= \dfrac{29Wa}{4}
so FA=29123W=FC \text{so }F_A= \dfrac{29}{12 \sqrt3}W=F_C
AB slips if FA>μRA i.e. If μ<FARA=29123×1291=29913 AB \text{ slips if }F_A> \mu R_A \text{ i.e. If }\mu< \dfrac{F_A}{R_A} =\dfrac{29}{12 \sqrt3} \times \dfrac{12}{91}= \dfrac{29}{91 \sqrt3}
and BC slips if FC>μRC i.e. If μ<FCRC=29123×1253=29533\text{and }BC \text{ slips if }F_C> \mu R_C \text{ i.e. If } \mu< \dfrac{F_C}{R_C}=\dfrac{29}{12 \sqrt3} \times \dfrac{12}{53}= \dfrac{29}{53 \sqrt3}
hence, BC slips and μ=29533 \text{hence, }BC \text{ slips and } \mu= \dfrac{29}{53 \sqrt3}
2004 STEP I question 13

(i)Pr(X0.8)=Prall three numbers are 0.8)=0.83=0.512 (i) Pr(X \leq0.8)=Pr \text{all three numbers are }\leq0.8)=0.8^3=0.512
F(x)==Pr(X=x) is x3 for 0<x<1 so density function is 3x2 for 0<x<1 and 0 elsewhere \text{F}(x)==Pr(X=x) \text{ is }x^3 \text{ for }0<x<1 \text{ so density function is }3x^2 \text{ for }0<x<1 \text{ and }0 \text{ elsewhere}
hence, E[X]=01x.3x2dx=013x3dx=[34x4]01=34 \text{hence, E}[X]= \displaystyle \int_0^1 x.3x^2dx= \displaystyle \int_0^13x^3dx= \displaystyle \left[\dfrac{3}{4}x^4 \right]_0^1= \dfrac{3}{4}
(ii)Null hypothesis is rejected if all N numbers are less than 0.8 (ii) \text{Null hypothesis is rejected if all }N \text{ numbers are less than }0.8
hence, with 5% significance level, if (0.8)N<0.05 \text{hence, with }5\%\text{ significance level, if }(0.8)^N<0.05
Unparseable latex formula:

\text{ i.e. } \left( \dfrac{2^3}{10} \right)^N< \dfrac{1}{20} \Rightarrow 2^{3N+1}<10^{N-1} \approx\left(2^{10/3} \righ)^N-1=2^{\frac{10N-10}{3}}


Unparseable latex formula:

\text{so we have }2^{9N+3}<2^{10N-10} \Rightarrow9N-3<10N-10 \RightarrowN>13


so smallest integer value of N is 14 \text{so smallest integer value of }N \text{ is }14
if a=0.8 then the null hypothesis is certain to be rejected, i.e. Probability of rejection =1\text{if }a=0.8 \text{ then the null hypothesis is certain to be rejected, i.e. Probability of rejection }=1
if a=9 null hypothesis is rejected with probability (89)14 \text{if }a=9 \text{ null hypothesis is rejected with probability }\left( \dfrac{8}{9} \right)^14
2004 STEP I question 14

We consider the possible sequences of gold and lead coins \text{We consider the possible sequences of gold and lead coins}
Denoting the coins by G and L respectively \text{Denoting the coins by }G \text{ and }L \text{ respectively}
total number of sequences of n G’s and 2 L’s is (n+2)(n+1)2 each eqully likely \text{total number of sequences of }n \text{ }G\text{'s and }2\text{ } L\text{'s is } \dfrac{(n+2)(n+1)}{2} \text{ each eqully likely}
(i)First Pirate gets some gold coins as long as he draws one first i,e with Probability nn+2 (i) \text{First Pirate gets some gold coins as long as he draws one first i,e with Probability }\dfrac{n}{n+2}
(ii)For second Pirate to get some gold. It is only necessary that the two L’s are separated  (ii) \text{For second Pirate to get some gold. It is only necessary that the two }L \text{'s are separated }
in the sequences \text{in the sequences}
Number of such sequences is (n+2)(n+1)2(n+1)=n(n+1)2 \text{Number of such sequences is } \dfrac{(n+2)(n+1)}{2}-(n+1)= \dfrac{n(n+1)}{2}
So Pr(second pirate gets some gold) is n(n+1)(n+1)(n+2)=nn+2 \text{So }Pr \text{(second pirate gets some gold) is }\dfrac{n(n+1)}{(n+1)(n+2)}= \dfrac{n}{n+2}
(iii)All three pirates get some gold if sequence begins and ends with G and the L’s are separated (iii) \text{All three pirates get some gold if sequence begins and ends with }G \text { and the }L \text{'s are separated}
Number of such sequences is n(n1)2(n1)=(n1)(n2)2\text{Number of such sequences is } \dfrac{n(n-1)}{2}-(n-1)= \dfrac{(n-1)(n-2)}{2}
So Pr(all three get some gold) =(n1)(n2)(n+1)(n+2) \text{So }Pr \text{(all three get some gold) }= \dfrac{(n-1)(n-2)}{(n+1)(n+2)}
2004 STEP II question 9

Taking moments about A(first diagram) we have  \text{Taking moments about }A \text{(first diagram) we have }
Mg(psinαqcosα)=mgrcosα Mg(p \sin \alpha-q \cos \alpha)=mgr \cos \alpha
so, dividing through by cosα we have \text{so, dividing through by }\cos \alpha \text{ we have}
Mgptanα=Mgq+mgrtanα=Mg+mrMp Mgp \tan \alpha=Mgq+mgr \Rightarrow \tan \alpha= \dfrac{Mg+mr}{Mp}
In new position (second diagram) we have  \text{In new position (second diagram) we have }
Mg(qcosβpsinβ)=mgrcosβ Mg(q \cos \beta-p \sin \beta)=mgr \cos \beta
i.e. Mgptanβ=Mgqmgrtanβ=MqmrMp \text{i.e. }Mgp \tan \beta=Mgq-mgr \Rightarrow \tan \beta= \dfrac{Mq-mr}{Mp}
Unparseable latex formula:

\text{Hence, }\tan(\alpha-\beta)= \dfrac{\tan\aloha-\tan\beta}{1+\tan\alpha\tan\beta}=\dfrac{\frac{Mq+mr}{Mp}-\frac{Mq-mr}{Mp}}{1+\left(\frac{Mq+mr}{Mp}\right)\left(\frac{Mq-mr}{Mp}\right)}


=Mp(2mr)M2p2+(Mq+mr)(Mqmr)=MmrpM2p2+M2q2m2r2 =\dfrac{Mp(2mr)}{M^2p^2+(Mq+mr)(Mq-mr)}= \dfrac{Mmrp}{M^2p^2+M^2q^2-m^2r^2}
=2mMrpM2(p2+q2)m2r2 as required = \dfrac{2mMrp}{M^2(p^2+q^2)-m^2r^2} \text{ as required}
(edited 12 years ago)
2004 STEP II question 13

She gains £1 on next draw if she draws another white and loses £n if she draws a red \text{She gains £1 on next draw if she draws another white and loses £}n \text{ if she draws a red}
so expected gain is 1×Pr(white drawn) n×Pr(red drawn) =bnrbnnrbn=bnrnrbn \text{so expected gain is }1\times Pr\text{(white drawn) }-n\times Pr\text{(red drawn) }=\dfrac{b-n-r}{b-n}- \dfrac{nr}{b-n}= \dfrac{b-n-r-nr}{b-n}
This is zero if bnrnr=0n=brr+1 \text{This is zero if }b-n-r-nr=0 \rightarrow n= \dfrac{b-r}{r+1}
with each subsequent throw, the probability of drawing a red increases \text{with each subsequent throw, the probability of drawing a red increases}
so expected gain de3creases and hence will become negative \text{so expected gain de3creases and hence will become negative}
So to maximise her expectation she should stop on the next throw \text{So to maximise her expectation she should stop on the next throw}
after the value found above i.e. when n= the integer part of brr+1+1 \text{after the value found above i.e. when }n= \text{ the integer part of } \dfrac{b-r}{r+1}+1
When b=2k say, and r=1 she should stop after drawing [2k12+1]=[k+12]=k=b2 balls \text{When }b=2k \text{ say, and }r=1 \text{ she should stop after drawing }\left[ \dfrac{2k-1}{2}+1 \right]=\left[k+ \dfrac{1}{2} \right]=k= \dfrac{b}{2} \text{ balls}
Pr(she draws b2 white balls and no red)=b1b×b2b1××bb2bb21=12 Pr \text{(she draws }\dfrac{b}{2} \text{ white balls and no red)}= \dfrac{b-1}{b} \times \dfrac{b-2}{b-1} \times \dots \times \dfrac{b- \frac{b}{2}}{b- \frac{b}{2}-1}= \dfrac{1}{2}
all other terms cancelling. So expected gain is £b2×12=£b4 \text{all other terms cancelling. So expected gain is £}\dfrac{b}{2} \times \dfrac{1}{2}=\text{£} \dfrac{b}{4}
Unparseable latex formula:

\text{Now suppose }b=2k+1, r=1 \text{ the critical value is now }\left[\dfrac{2k+1-1}{2} +1 \right]=k+1 \text{ i.e. }\left(\dfrac{1}2}(b+1)\right)


Pr(she draws12(b+1) white balls) is b+1b××b12b12b12b+12=12b12b=1212b Pr \text{(she draws} \dfrac{1}{2}(b+1) \text{ white balls) is }\dfrac{b+1}{b}\times \dots \times \dfrac{b-\frac{1}{2}b-\frac{1}{2}}{b-\frac{1}{2}b+\frac{1}{2}}=\dfrac{\frac{1}{2}b-\frac{1}{2}}{b}=\dfrac{1}{2}-\dfrac{1}{2b}
so excpected winnings in this case are (1212b)(12b+12)=(b1)(b+1)4b=b214b \text{so excpected winnings in this case are } \left(\dfrac{1}{2}-\dfrac{1}{2b}\right) \left( \dfrac{1}{2}b+ \dfrac{1}{2}\right)=\dfrac{(b-1)(b+1)}{4b}=\dfrac{b^2-1}{4b}
2004 STEP II question 14

With reference to the diagram Pr(ABC) consists of the total area inside the circles, \text{With reference to the diagram }Pr(A \cup B\cup C) \text{ consists of the total area inside the circles,}
This however will include the overlap of A&B,B&C and C&A twice so we must remove each of these overlaps once. \text{This however will include the overlap of }A\&B, B\&C \text{ and }C\&A \text{ twice so we must remove each of these overlaps once.}
We have now however removed the central region completely. i.e. The overlap of A,B and C \text{We have now however removed the central region completely. i.e. The overlap of }A,B \text{ and }C
and so this must be added again which gives the required result\text{and so this must be added again which gives the required result}
Let the three puddings be denoted A,B and C \text{Let the three puddings be denoted }A,B \text{ and }C
Pr(A does not contain a sixpence) is (23)r so Pr(it does) is 1(23)r Pr(A \text{ does not contain a sixpence) is }\left(\dfrac{2}{3}\right)^r \text { so }Pr \text{(it does) is }1-\left(\dfrac{2}{3}\right)^r
hence Pr(A)=Pr(B)=Pr(C)=1(23)r and Pr(ABC)=1 \text{hence }Pr(A)=Pr(B)=Pr(C)=1-\left(\dfrac{2}{3}\right)^r \text{ and } Pr(A \cup B \cup C)=1
Pr(all in one pudding)=(13)r so Pr(not all in same pudding)=1(13)r Pr \text{(all in one pudding)}= \left(\dfrac{1}{3}\right)^r \text{ so }Pr \text{(not all in same pudding)}=1-\left(\dfrac{1}{3}\right)^r
i.e. P(AB)=P(BC)=P(CA)=1(13)r \text{i.e. }P(A \cap B)=P(B \cap C)=P(C \cap A)=1-\left(\dfrac{1}{3}\right)^r
Unparseable latex formula:

\text{so from result established above }1=3\left(1-\left(\dfrac{2}{3}\right)^r \right)-3\left(1-\left(\dfrac{1}{3}\right)^r+P(A \cap B \cap C)


hence, P(ABC)=13(1(23)r)+3(1(13)r)=13(23)r+3(13)r \text {hence, }P(A \cap B \cap C)=1-3 \left(1- \left( \dfrac{2}{3} \right)^r \right)+3 \left(1- \left( \dfrac{1}{3} \right)^r \right)=1-3 \left( \dfrac{2}{3} \right)^r+3 \left( \dfrac{1}{3} \right)^r
This is the probability that there is at least one sixpence in each pudding \text{This is the probability that there is at least one sixpence in each pudding}
and the complement is that at least one pudding has no sixpence \text{and the complement is that at least one pudding has no sixpence}
which thus has probability 3(23)r3(13)r \text{which thus has probability }3 \left( \dfrac{2}{3} \right)^r-3 \left( \dfrac{1}{3} \right)^r
if this is to be less than 13 then we require 3(23)r3(13)r<132r1<3r2 \text{if this is to be less than }\dfrac{1}{3} \text{ then we require }3 \left( \dfrac{2}{3} \right)^r-3 \left( \dfrac{1}{3} \right)^r <\dfrac{1}{3} \Rightarrow 2^r-1<3^{r-2}
We check integer values of r. r=12r1=1>31,r=22r1=3>30 \text{We check integer values of }r.\text{ }r=1\Rightarrow 2^r-1=1>3^{-1}, r=2\Rightarrow 2^r-1=3>3^0
r=32r1=7>31,r=42r=1=15>32,r=52r1=31>34,r=62r1=63<34r=3\Rightarrow 2^r-1=7>3^1, r=4 \Rightarrow 2^r=-1=15>3^2, r=5\Rightarrow 2^r-1=31>3^4,r=6\Rightarrow2^r-1=63<3^4
so smallest value of r for which the inequality holds is 6 \text{so smallest value of }r \text{ for which the inequality holds is }6
Pr(2 sixpences in each pudding)=6C2.4C236=15×636=1081 Pr\text{(2 sixpences in each pudding)}= \dfrac{^6 \text{C}_2.^4 \text{C}_2}{3^6}= \dfrac{15\times6}{3^6}=\dfrac{10}{81}
Unparseable latex formula:

Pr \text{(at least one sixpence in each)}=1-3\left( \dfrac{2}{3} \right)^r+3\left( \dfrac{1}[3} \right)^r=1-\dfrac{2^6}{3^5}+\dfrac{1}{3^5}=1- \dfrac{64+1}{243}= \dfrac{180}{243}


so Pr(at least 2 sixpences in each | at least one in each)=1081×243180=2×336=16 \text{so }Pr \text{(at least 2 sixpences in each | at least one in each)}=\dfrac{10}{81} \times \dfrac{243}{180}= \dfrac{2\times3}{36}= \dfrac{1}{6}
(edited 12 years ago)
2004 STEP III question 9

We consider the forces acting on the hoop\text{We consider the forces acting on the hoop}
If mouse runs at constant speed, Resolving tangentially F=mgsin2θ \text{If mouse runs at constant speed, Resolving tangentially }F=mg \sin 2\theta
Resolving radially Nmgcos2θ=mv2a \text{Resolving radially }N-mg \cos 2\theta= \dfrac{mv^2}{a}
whilst if hoop remains stationary, taking moments about P \text{whilst if hoop remains stationary, taking moments about P}
F×PMcosθ)=N×PMsinθFcosθ=Nsinθ F\times PM\cos\theta)=N\times PM\sin\theta \Rightarrow F\cos\theta=N\sin\theta
i.e. mgasin2θcosθ)=(mgcos2θ+mv2a)asinθ \text{i.e. }mga \sin 2\theta\cos \theta)=\left(mg \cos 2\theta + \dfrac{mv^2}{a} \right)a \sin \theta
    mgasin2θcosθmgacos2θsinθ=mv2sinθ\implies mga\sin2\theta\cos\theta-mga\cos2\theta\sin\theta=mv^2 \sin\theta
    mgasinθ=mv2sinθ    v2=ag \implies mga \sin \theta=mv^2 \sin \theta \implies v^2=ag
so, if mouse runs at a speed of ag the hoop remains in equilibrium \text{so, if mouse runs at a speed of } \sqrt{ag} \text{ the hoop remains in equilibrium}
Unparseable latex formula:

F \leq \mu N \implies mg \sin n\theta \leq \mu (mg \cos \theta+mg) \implies \mu \geq \dfrac{ \sdin \theta}{1+ \cos \theta}= \dfrac{2 \sin \frac{1}{2} \theta \cos \gfrac{1}{2} \theta}{2 \cos^2 \frac{1}{2} \theta}=\tan \frac{1}{2} \theta}


Unparseable latex formula:

\text{so mouse runs without slipping while } \thewtya \leq 2 \arctan \mu


initially, hoop rotates in opposite sense to the mouse’s motion round the circle \text{initially, hoop rotates in opposite sense to the mouse's motion round the circle}
(edited 11 years ago)
2004 STEP III question 12
Last question from 2004

Probability that player i has correct shirt is 1m and probability of wrong shirt is m1m \text{Probability that player }i \text{ has correct shirt is } \dfrac{1}{m} \text{ and probability of wrong shirt is } \dfrac{m-1}{m}
Hence, E[C1]=0×m1m+1×1m=1m \text{Hence, E}[C_1]=0 \times \dfrac{m-1}{m}+1 \times \dfrac{1}{m}= \dfrac{1}{m}
Var[C1]=02×m1m+12×1m(1m)2=m1m2 \text {Var}[C_1]=0^2 \times \dfrac{m-1}{m}+ 1^2 \times \dfrac{1}{m}-\left( \dfrac{1}{m} \right)^2=\dfrac{m-1}{m^2}
Cov[C1C2]=E[C1C2]E[C1]E[C2] \text{Cov}[C_1C_2]= \text{E}[C_1C_2]-\text{E}[C_1] \text{E}[C_2]
Now C1C2=1 if C1=1 and C2=1 which has probability 1m×1m1=1m(m1) \text{Now }C_1C_2=1 \text{ if }C_1=1 \text{ and }C_2=1 \text{ which has probability } \dfrac{1}{m} \times \dfrac{1}{m-1}= \dfrac{1}{m(m-1)}
and probability that C1C2=0 is 11m(m1)=m2m1m(m1) \text{and probability that }C_1C_2=0 \text{ is }1- \dfrac{1}{m(m-1)}= \dfrac{m^2-m-1}{m(m-1)}
so Cov[C1C2]=1(m(m1)(1m)2=m(m1)m2(m1)=1m2(m1) \text{so Cov}[C_1 C_2]= \dfrac{1}{(m(m-1)}- \left( \dfrac{1}{m} \right)^2= \dfrac{m-(m-1)}{m^2(m-1)}= \dfrac{1}{m^2(m-1)}
E[N]=E[C1+C2++Cm]=m×E[Ci]=m×1m=1 \text{E}[N]= \text{E}[C_1+C_2+ \dots +C_m]=m \times \text{E}[C_i]=m \times \dfrac{1}{m}=1
Unparseable latex formula:

\text{Var}[N]= \displaystyle \sum_{i=1}^m \text{Var}[C_i]+2 \sum_{i \neq j} \text{Cov}[C_iC_j]= \sum_{i=1}^m \left( \dfrac{1}{m}- \dfrac{1}{m^2} \right)+2 \sum_{i \neq j} \left( \dfrac{1}{m^2(m-1)} \right)}


=m(1m1m2)+2m(m1)2×(1m2(m1))=1n1m+1m=1 =m \left( \dfrac{1}{m}- \dfrac{1}{m^2} \right)+2 \dfrac{m(m-1)}{2} \times \left( \dfrac{1}{m^2(m-1)} \right)=1- n\dfrac{1}{m}+ \dfrac{1}{m}=1
A normal distribution is the limit of a large number of identical but independent \text{A normal distribution is the limit of a large number of identical but independent}
Bernoulli trials. Here we are not likely to have a very large number and the trials are not \text{Bernoulli trials. Here we are not likely to have a very large number and the trials are not}
independent so a normal distribution is not likely to be appropriate \text{independent so a normal distribution is not likely to be appropriate}
However, since E[N]=Var[N] a Poisson may well be reasonable\text{However, since E}[N]= \text{Var}[N] \text{ a Poisson may well be reasonable}
Possible arrangements of 4 numbers, none of which are in the correct position are as follows: \text{Possible arrangements of 4 numbers, none of which are in the correct position are as follows:}
(2,1,4,3),(2,4,1,3),(2,3,4,1),(3,1,4,2),(3,4,1,2),(3,4,2,1),(4,1,2,3),(4,3,1,2),(4,3,2,1) (2,1,4,3),(2,4,1,3),(2,3,4,1),(3,1,4,2),(3,4,1,2),(3,4,2,1),(4,1,2,3),(4,3,1,2),(4,3,2,1)
Unparseable latex formula:

\text{so, probability that all shirts are wrong is } \dfrac{9}{4!}= \dfrac{9}245}= \dfrac{3}{8}


using Po(1) as an approximation we have P(0)=e1100272 \text{using Po}(1) \text{ as an approximation we have }P(0)= \text{e}^{-1} \approx \dfrac{100}{272}
so relative error is 3810027238=102100102=21020.02 i.e. approximately 2% \text{so relative error is } \dfrac{\frac{3}{8}- \frac{100}{272}}{\frac{3}{8}}= \dfrac{102-100}{102}= \dfrac{2}{102} \approx 0.02 \text{ i.e. approximately }2\%
Original post by Oh I Really Don't Care
TEP III, Question 5

Spoiler


Xero Xenith
...

As Xero pointed out in the STEP thread, there's a mistake with this solution (in particular, part (i)). It should go something more like the following:

STEP III Q5



SimonM
...

DFranklin
...

Could either of you add this to the first page? Thanks.
Original post by Daniel Freedman
STEP II 2004, Question 7

Spoiler



Can someone please fix the fourth and third line from the bottom? I think they're typos. Thanks.
Reply 75
Original post by Daniel Freedman
STEP II, 2004, Question 3

Spoiler



Is (2,0) not a point of inflexion?
Original post by desijut
Is (2,0) not a point of inflexion?
No, it's definitely a minimum.

You're probably thinking that if f''(a) = 0 then x = a is a point of inflection. But strictly speaking, you need f''(x) to change sign at x = a, which it doesn't, here.

[For the specific function here, note that x(x+1) > 0 for x > 0, and obviously (x-2)^4 >=0 with equality iff x = 2. So in fact x(x+1)(x-2)^2 >= 0 with equality iff x = 2, and so it's a maximum.

I would say that the solution you've quoted doesn't really explain (to my mind) why it's a maximum, which may explain some of your confusion].
Reply 77
Original post by DFranklin
No, it's definitely a minimum.

You're probably thinking that if f''(a) = 0 then x = a is a point of inflection. But strictly speaking, you need f''(x) to change sign at x = a, which it doesn't, here.

[For the specific function here, note that x(x+1) > 0 for x > 0, and obviously (x-2)^4 >=0 with equality iff x = 2. So in fact x(x+1)(x-2)^2 >= 0 with equality iff x = 2, and so it's a maximum.

I would say that the solution you've quoted doesn't really explain (to my mind) why it's a maximum, which may explain some of your confusion].


Ok thanks, and yes, no reason was provided for the minimum and the way it was written said it was somehow implied, but it makes sense now.
Reply 78
Original post by Aurel-Aqua
2004 II, Question 12


Making the comparison:
h>mh>m
    1aln(21+ea)>12a\iff \sqrt{\frac{1}{a}\ln\left(\frac{2}{1+e^{-a}}\right)} > \frac{1}{2a}
    2ln(21+ea)>1\iff 2\ln\left(\frac{2}{1+e^{-a}}\right) > 1
    21+ea>e1/2\iff \frac{2}{1+e^{-a}} > e^{1/2}
    2e1/21>ea\iff 2e^{-1/2}-1>e^{-a}
    ln(2e1/21)>a\iff ln(2e^{-1/2}-1)>-a
    ln(2e1/21)<a\iff -ln(2e^{-1/2}-1)<a, as required.



Step II, Question 12.

There seems to be a substantial breakdown in my understanding- how is the jump made from
    1aln(21+ea)>12a\iff \sqrt{\frac{1}{a}\ln\left(\frac{2}{1+e^{-a}}\right)} > \frac{1}{2a}
to     2ln(21+ea)>1\iff 2\ln\left(\frac{2}{1+e^{-a}}\right) > 1

It seems as though the LHS is squared, to give a coefficient of 1a\frac{1}{a} While the RHS has remained unaltered...

Clearly this method works as it generates the required inequality, but why does this not multiply out to     1aln(21+ea)>14a2\iff \frac{1}{a} \ln\left(\frac{2}{1+e^{-a}}\right) > \frac{1}{4a^2} ? Which would also make the solution much harder to reach...
(edited 11 years ago)
Reply 79
Original post by Aurel-Aqua
2004 II, Question 12

Finding the mode:
To get the mode, we differentiate to find the maximum point (since f(0)=0f(0) = 0 and f(x)>0f(x)>0 for other xx: f(m)=0=keam2(1axm2)    2am2=1f'(m) = 0 = ke^{-am^2}(1-axm^2) \iff 2am^2 = 1. In case a<12a<\frac{1}{2}, m2m^2 will be less than 1, so this case has no mode (since it would be outside the range 0m10\leq m \leq 1. In case a>12 a > \frac{1}{2}, m=12a\boxed{m=\frac{1}{2a}}.



EDIT- in fact, going back to part b) the finding of the mode, 2am2=12am^2 = 1 leads to m=12a\boxed{m=\frac{1}{2a}} where it should instead lead to m=12a\boxed{m=\frac{1}{\sqrt{2a}}} If this is the case, then this solves the issue with the comparison, as
Unparseable latex formula:

\iff \sqrt{\frac{1}{a}\ln\left(\frac{ 2}{1+e^{-a}}\right)} &gt; \frac{1}{\sqrt{2a}}

will multiply out as desired.

Also- m2m^2 will be greater than 1 if a<12a<\frac{1}{2} , which also does not give a modal value. But if m2m^2 was less than 1, it would give a modal value.

Can someone confirm/correct what i've suggested in these two posts?
(edited 11 years ago)

Quick Reply

Latest

Trending

Trending