# Subsets of sets

Watch
Announcements

Page 1 of 1

Go to first unread

Skip to page:

Hi,

If I have a the following sets, what will be the subsets?

S1= {{B}, B}

S2= {{B}}

I'm not sure is S1 is both and how to write it and if S2 will keep both brackets?

Thanks for your help!!

If I have a the following sets, what will be the subsets?

S1= {{B}, B}

S2= {{B}}

I'm not sure is S1 is both and how to write it and if S2 will keep both brackets?

Thanks for your help!!

0

reply

Report

#2

(Original post by

Hi,

If I have a the following sets, what will be the subsets?

S1= {{B}, B}

S2= {{B}}

I'm not sure is S1 is both and how to write it and if S2 will keep both brackets?

Thanks for your help!!

**loryn95**)Hi,

If I have a the following sets, what will be the subsets?

S1= {{B}, B}

S2= {{B}}

I'm not sure is S1 is both and how to write it and if S2 will keep both brackets?

Thanks for your help!!

Suppose S={a,b}

Then the subsets are sets consisting of different combinations of elements of S.

i.e. {a} {b} {a,b} and {}.............................. ..(1)

Note that the whole set and the empty set are always subsets of our given set.

Now suppose instead of the element "a", be have a set "{c}", I.e. S={{c},b}

As far as the set S is concerned "{c}" is just an element of S. Note, "c" is NOT and element of S.

We can just replace "a" with "{c}" in (1) and we have all the subsets of our new S.

Can you now do your original question?

1

reply

Report

#3

**loryn95**)

Hi,

If I have a the following sets, what will be the subsets?

S1= {{B}, B}

S2= {{B}}

I'm not sure is S1 is both and how to write it and if S2 will keep both brackets?

Thanks for your help!!

So S1 is a set containing the elements B and {B} (which is itself a set containing B).

A subset of a set A is a set containing elements that are in A.

So {B} is a subset of S1 because {B} is a set containing only the element B. And B is an element of S1.

{{B}} is also a subset of S1. This is because {{B}} is a set containing only the element {B} and {B} is an element of S1.

Does that help? So what are all the subsets of S1 and S2? Remeber that the empty set {} is a subset of any set so you'll need to include the empty set in your list of subsets.

0

reply

(Original post by

In set notation, elements in a set are separated by commas.

So S1 is a set containing the elements B and {B} (which is itself a set containing B).

A subset of a set A is a set containing elements that are in A.

So {B} is a subset of S1 because {B} is a set containing only the element B. And B is an element of S1.

{{B}} is also a subset of S1. This is because {{B}} is a set containing only the element {B} and {B} is an element of S1.

Does that help? So what are all the subsets of S1 and S2? Remeber that the empty set {} is a subset of any set so you'll need to include the empty set in your list of subsets.

**notnek**)In set notation, elements in a set are separated by commas.

So S1 is a set containing the elements B and {B} (which is itself a set containing B).

A subset of a set A is a set containing elements that are in A.

So {B} is a subset of S1 because {B} is a set containing only the element B. And B is an element of S1.

{{B}} is also a subset of S1. This is because {{B}} is a set containing only the element {B} and {B} is an element of S1.

Does that help? So what are all the subsets of S1 and S2? Remeber that the empty set {} is a subset of any set so you'll need to include the empty set in your list of subsets.

0

reply

I just thought of another quick question actually. For S1={{B}, B} what will the cardinality be if we have another set which is S3= B= {e,f,g}?

Would it be 4 or would it be 2?

Would it be 4 or would it be 2?

0

reply

Report

#6

(Original post by

Yes that's really helped thanks! So the subsets of S1 are {B} and {{B}} and S2 {{B}} I believe?

**loryn95**)Yes that's really helped thanks! So the subsets of S1 are {B} and {{B}} and S2 {{B}} I believe?

A subset can have more than 1 element.

S1 contains B and {B} so you can make a subset with both of these elements:

{B, {B}}

For any set, one of the susbets of it will be the set itself.

Also, as I mentioned above, the empty set { } is a subset of any set.

0

reply

Report

#7

(Original post by

I just thought of another quick question actually. For S1={{B}, B} what will the cardinality be if we have another set which is S3= B= {e,f,g}?

Would it be 4 or would it be 2?

**loryn95**)I just thought of another quick question actually. For S1={{B}, B} what will the cardinality be if we have another set which is S3= B= {e,f,g}?

Would it be 4 or would it be 2?

0

reply

(Original post by

Can you clarify your question - which set do you want to know the cardinality of?

**notnek**)Can you clarify your question - which set do you want to know the cardinality of?

Is it |S1| 1 or |S1|4?

We know B has 3 members due to S3 which is why I was wondering whether we take this into account if B is within another set?

0

reply

Report

#9

(Original post by

Yeah sorry, I meant what is the cardinality of S1?

Is it |S1| 1 or |S1|4?

We know B has 3 members due to S3 which is why I was wondering whether we take this into account if B is within another set?

**loryn95**)Yeah sorry, I meant what is the cardinality of S1?

Is it |S1| 1 or |S1|4?

We know B has 3 members due to S3 which is why I was wondering whether we take this into account if B is within another set?

S1 = {{B}, B}

As I explained before, this is a set containing only the elements {B} and B (since these are separated by commas).

So the cardinality is 2 because there are only 2 elements. What these elements are is irrelevant.

0

reply

X

Page 1 of 1

Go to first unread

Skip to page:

### Quick Reply

Back

to top

to top