The Student Room Group

STEP maths I, II, III 2007 solutions

(Up-to-date as of post #115)

FINISHED!

Well done everbody!

Introduction/goal
Solutions for earlier STEP papers are not available on the internet, so we're making our own. Please submit any solution to any problem which is currently unsolved (red above); if you see any mistakes in solutions posted, please point them out. :smile:

(Several of the other threads still have one or two unsolved questions too - links are at the bottom of this post.)

Link to the papers:
STEP I - STEP II - STEP III

STEP I:
1 - solved by generalebriety, alternative by Dystopia, also see thread
2 - part (i) solved by eponymous, part (ii) solved by eponymous.
3 - solved by insparato, partial alternative solution by calcium878
4 - solved by ukgea
5 - part (i) solved by calcium878, part (ii) solved by calcium878
6 - solved by coffeym
7 - solved by Dystopia
8 - solved by calcium878
9 - solved by coffeym
10 - part (i) solved by Square, part (ii) solved by DFranklin
11 - solved by DFranklin
12 - solved (rather sketchily) by ukgea
13 - solved by DFranklin
14 - solved by DFranklin

STEP II:
1 - solved by SsEe
2 - solved by Chewwy
3 - solved by insparato
4 - solved by generalebriety
5 - solved by generalebriety
6 - solved by Chewwy
7 - solved by ukgea
8 - solved by Dystopia
9 - solved by DFranklin
10 - solved by Dystopia
11 - solved by Dystopia
12 - solved by DFranklin
13 - solved by SsEe
14 - solved by coffeym

STEP III:
1 - solved by generalebriety, also see thread
2 - solved by Speleo
3 - solved by generalebriety
4 - solved by insparato
5 - solved by DFranklin
6 - solved by ukgea
7 - solved by generalebriety
8 - solved by generalebriety
9 - solved by DFranklin
10 - solved by DFranklin
11 - solved by DFranklin
12 - solved by SsEe
13 - solved by DFranklin
14 - solved by DFranklin



Solutions written by TSR members:
1987 - 1988 - 1989 - 1990 - 1991 - 1992 - 1993 - 1994 - 1995 - 1996 - 1997 - 1998 - 1999 - 2000 - 2001 - 2002 - 2003 - 2004 - 2005 - 2006 - 2007

Scroll to see replies

Reply 1
STEP II Q6, solution by chewwy, shamelessly stolen from the STEP II thread:

http://www.thestudentroom.co.uk/attachment.php?attachmentid=42044&d=1183161671
Reply 2
I'll do Question 3 STEP I. (What a gem)
An excellent idea. :biggrin:

III/1:

tan(θ1+θ2+θ3+θ4)=tan(θ1+θ2)+tan(θ3+θ4)1tan(θ1+θ2)tan(θ3+θ4)\displaystyle \tan (\theta_1 + \theta_2 + \theta_3 + \theta_4) = \frac{\tan (\theta_1 + \theta_2) + \tan (\theta_3 + \theta_4)}{1 - \tan (\theta_1 + \theta_2)\tan (\theta_3 + \theta_4)}

=t1+t21t1t2+t3+t41t3t41(t1+t21t1t2)(t3+t41t3t4)\displaystyle = \frac{\frac{t_1+t_2}{1-t_1t_2} + \frac{t_3+t_4}{1-t_3t_4}}{1 - \left(\frac{t_1+t_2}{1-t_1t_2}\right) \left(\frac{t_3+t_4}{1-t_3t_4}\right)}

=(t1+t2)(1t3t4)+(t3+t4)(1t1t2)(1t1t2)(1t3t4)(t1+t2)(t3+t4).\displaystyle = \frac{(t_1+t_2)(1-t_3t_4) + (t_3+t_4)(1-t_1t_2)}{ (1-t_1t_2)(1-t_3t_4) - (t_1+t_2)(t_3+t_4)} .

at4+bt3+ct2+dt+e=a(tt1)(tt2)(tt3)(tt4)\displaystyle at^4 + bt^3 + ct^2 + dt + e = a(t-t_1)(t-t_2)(t-t_3)(t-t_4)

t1+t2+t3+t4=b/a,t1t2+t1t3+t1t4+t2t3+t2t4+t3t4=c/a,\displaystyle \Rightarrow t_1+t_2+t_3+t_4 = -b/a,\quad t_1t_2 + t_1t_3 + t_1t_4 + t_2t_3 + t_2t_4 + t_3t_4 = c/a,
t1t2t3+t1t2t4+t1t3t4+t2t3t4=d/a,t1t2t3t4=e/a.\displaystyle t_1t_2t_3 + t_1t_2t_4 + t_1t_3t_4 + t_2t_3t_4 = -d/a, \quad t_1t_2t_3t_4 = e/a.

tan(θ1+θ2+θ3+θ4)=(t1+t2+t3+t4)(t1t2t3+t1t2t4+t1t3t4+t2t3t4)t1t2t3t4+1(t1t2+t1t3+t1t4+t2t3+t2t4+t3t4)\displaystyle \tan (\theta_1 + \theta_2 + \theta_3 + \theta_4) = \frac{(t_1+t_2+t_3+t_4) - (t_1t_2t_3 + t_1t_2t_4 + t_1t_3t_4 + t_2t_3t_4)}{t_1t_2t_3t_4 + 1 - (t_1t_2 + t_1t_3 + t_1t_4 + t_2t_3 + t_2t_4 + t_3t_4)}

=(b/a)+(d/a)(e/a)+1(c/a)\displaystyle = \frac{(-b/a) + (d/a)}{(e/a) + 1 - (c/a)}

=dba+ec.()\displaystyle = \frac{d-b}{a+e-c} . \quad (*)

--

tanθi=tisinθi=ti1+ti2,cosθi=11+ti2.\displaystyle \tan \theta_i = t_i \Rightarrow \sin \theta_i = \frac{t_i}{\sqrt{1 + t_i^2}} ,\quad \cos \theta_i = \frac{1}{\sqrt{1+t_i^2}} .

Substituting into the given equation:

pcos2θ+cos(θα)+p=0\displaystyle p\cos 2\theta + \cos (\theta -\alpha ) + p = 0

2pcos2θp+cosθcosαsinθsinα+p=0\displaystyle 2p\cos^2\theta - p + \cos\theta\cos\alpha - \sin\theta\sin\alpha + p = 0

2p1+t2+cosα1+t2tsinα1+t2=0\displaystyle \frac{2p}{1+t^2} + \frac{\cos\alpha}{\sqrt{1+t^2}} - \frac{t\sin\alpha}{1 + t^2} = 0

2p=(cosα+tsinα)1+t2\displaystyle 2p = -(\cos\alpha + t\sin\alpha ) \sqrt{1+t^2}

4p2=(cos2α+tsin2α+t2sin2α)(1+t2)\displaystyle 4p^2 = (\cos^2\alpha + t\sin 2\alpha + t^2\sin^2\alpha )(1+t^2)

(sin2α)t4+(sin2α)t3+t2+(sin2α)t+(cos2α4p2)=0\displaystyle (\sin^2\alpha )t^4 + (\sin 2\alpha )t^3 + t^2 + (\sin 2\alpha )t + (\cos^2\alpha - 4p^2) = 0

Substituting into (*):

tan(θ1+θ2+θ3+θ4)=sin2αsin2αa+ec=0\displaystyle \tan (\theta_1 + \theta_2 + \theta_3 + \theta_4) = \frac{\sin 2\alpha - \sin 2\alpha}{a+e-c} = 0

tan(θ1+θ2+θ3+θ4)=0θ1+θ2+θ3+θ4=nπ\displaystyle \tan (\theta_1 + \theta_2 + \theta_3 + \theta_4) = 0 \Rightarrow \theta_1 + \theta_2 + \theta_3 + \theta_4 = n\pi

as required.
Reply 4
STEP III Q2, solution by Speleo, shamelessly stolen from the STEP III thread:

Speleo

2
i
1.3.5.7...(2n1)=1.2.3.4...(2n1)(2n)2.4.6.8...(2n)1.3.5.7...(2n-1) = \frac{1.2.3.4...(2n-1)(2n)}{2.4.6.8...(2n)}
=(2n)!(2.1)(2.2)(2.3)(2.4)...(2.n)=(2n!)2nn!= \frac{(2n)!}{(2.1)(2.2)(2.3)(2.4)...(2.n)} = \frac{(2n!)}{2^nn!} as required.
114x=(14x)12\frac{1}{\sqrt{1-4x}} = (1-4x)^{-\frac{1}{2}}
Binomial expansion valid for 4x<1|4x| < 1 i.e. x<14|x| < \frac{1}{4} as given.
114x=1+2x+...+(12)(32)...(2r12).(4x)rr!+...\frac{1}{\sqrt{1-4x}} = 1 + 2x + ... + \frac{(-\frac{1}{2})(-\frac{3}{2})...(-\frac{2r-1}{2}).(-4x)^r}{r!} + ...
Every successive term is multiplied by two extra negative terms, one fraction from the exponent and one power of -4x, so every term stays positive overall, so all minus signs can be removed.
=1+2x+...+(12)(32)...(2r12).(4x)rr!+...= 1 + 2x + ... + \frac{(\frac{1}{2})(\frac{3}{2})...(\frac{2r-1}{2}).(4x)^r}{r!} + ...
Using the formula just proved and noting that there is a divisor of 2r2^r in total from the product of (32)...(2r12)(\frac{3}{2})...(\frac{2r-1}{2}):
=1+2x+...+(2r!)4rxr2r2r(r!)2+...= 1 + 2x + ... + \frac{(2r!)4^rx^r}{2^r2^r(r!)^2} + ...
=1+2x+...+(2r!)xr(r!)2+...= 1 + 2x + ... + \frac{(2r!)x^r}{(r!)^2} + ...
=1+Σ1(2n!)xn(n!)2= 1 + \Sigma_1^{\infty}\frac{(2n!)x^n}{(n!)^2} as required.
Verify that 2x is the first term by setting n = 1 and getting 2x.

ii
Differentiate both sides with respect to x:
2(14x)32=Σ1n(2n!)xn1(n!)2\frac{2}{(1-4x)^{\frac{3}{2}}} = \Sigma_1^{\infty}\frac{n(2n!)x^{n-1}}{(n!)^2}
Setting x=625x = \frac{6}{25}:
250=Σ1n(2n!)625n1(n!)2250 = \Sigma_1^{\infty}\frac{n(2n!)\frac{6}{25}^{n-1}}{(n!)^2}
Multiply both sides by 625\frac{6}{25}:
Σ1n(2n!)625n(n!)2=60\Sigma_1^{\infty}\frac{n(2n!)\frac{6}{25}^n}{(n!)^2} = 60 as required.

iii
This time integrate instead:
1214x=x+Σ1(2n!)xn+1(n+1)(n!)2+C-\frac{1}{2}\sqrt{1-4x} = x + \Sigma_1^{\infty}\frac{(2n!)x^{n+1}}{(n+1)(n!)^2} + C
Set x = 0:
12=0+0+CC=12 -\frac{1}{2} = 0 + 0 + C \rightarrow C = -\frac{1}{2}
Set x = 29\frac{2}{9}:
16=29+Σ1(2n!)2n+132n(n+1)!(n!)12-\frac{1}{6} = \frac{2}{9} + \Sigma_1^{\infty}\frac{(2n!)2^{n+1}}{3^{2n}(n+1)!(n!)} - \frac{1}{2}
Σ1(2n!)2n+132n+2(n+1)!(n!)=19\Sigma_1^{\infty}\frac{(2n!)2^{n+1}}{3^{2n+2}(n+1)!(n!)} = \frac{1}{9}
Σ1(2n!)2n+132n(n+1)!(n!)=1\Sigma_1^{\infty}\frac{(2n!)2^{n+1}}{3^{2n}(n+1)!(n!)} = 1 as required.
Reply 5
STEP III Q6:

Firstly,

pp=p2=a2pp^* = |p|^2 = a^2

and similarly for q.

Thus we have

pq(pq)=ppqqqp=a2(qp)pq(p^* - q^*) = pp^*q - qq^*p = a^2(q-p)

and the first result follows.

Then, note that if PQPQ and RSRS are perpendicular,

pqsr=pqsri\displaystyle \frac{p-q}{s-r} = \frac{|p-q|}{|s-r|}i

or

pqsr=pqsri\displaystyle \frac{p-q}{s-r} = -\frac{|p-q|}{|s-r|}i

Either way, we have

pqsr=(pqsr)\displaystyle \frac{p^* - q^*}{s^* - r^*} = \left(\frac{p-q}{s-r}\right)^*

pqsr=pqsr\displaystyle \frac{p^* - q^*}{s^* - r^*} = -\frac{p-q}{s-r}

and thus

srsr=pqpq\displaystyle \frac{s-r}{s^* - r^*} = - \frac{p-q}{p^*-q^*}

srsr+pqpq=0\displaystyle \frac{s-r}{s^* - r^*} + \frac{p-q}{p^*-q^*} = 0

from which it follows that

pq+rspq + rs

=a2(pqpq+srsr)\displaystyle = -a^2 \left(\frac{p-q}{p*-q*} + \frac{s-r}{s^* - r^*}\right)

=0 = 0

as required.

For the next part, we have in the case n=3n=3: (let ai,bia_i, b_i represent Ai,BiA_i, B_i in the Argand plane, with the circle centred in the origin and with radius a)

Unparseable latex formula:

\displaystyle \left\{\begin{array} a_1a_2 = -b_1b_2 \\ a_2a_3 = - b_2b_3 \\ a_3a_1 = -b_3b_1 \end{array}\right.



Multiplying the first and the third equations, and then dividing by the second, we get

a12=b12\displaystyle a_1^2 = -b_1^2

there are obviously two distinct b1b_1 that satisfy this, as required.

For n=4n = 4, it's instead

Unparseable latex formula:

\displaystyle \left\{\begin{array} a_1a_2 = -b_1b_2 \\ a_2a_3 = - b_2b_3 \\ a_3a_4 = -b_3b_4 \\ a_4a_1 = -b_4b_1 \end{array}\right.



In this case, any b1b_1 can satisfy this, becayse if you choose a b1b_1, you can always choose a b2b_2 so that the first equation is satisfied, and then a b3b_3 so that the second one is satisfied, and then a b4b_4 so that the third is satisfied, and then, and here's the catch, equation 4 follows from the other three: (multiply the first and third equations and divide by the fourth) and so the fourth equation will automatically satified.

For larger n, we have exactly the same sitution as in n = 3 when n is odd (you can use the same reasoning, just alternatingly multiply and divide all the equations together) and as in n = 4 when n is even (again the same reasoning, the last equation can always be obtained by alternatingly multiplying and dividing the first ones together.
Reply 6
Don't suppose the papers are up on the 'net yet are they?
Reply 7
Square
Don't suppose the papers are up on the 'net yet are they?


Not really, but they are stilled linked in the first post. :tsr2:
Reply 8
Gonna try some of the mechanics questions :smile:
Ooooooh. III/7. Mine. :wink:

(i)
t(x)=0x11+u2du.\displaystyle t(x) = \int_0^x \frac{1}{1+u^2} \text{d} u.

u=v1du=v2dvu = v^{-1} \Rightarrow \text{d} u = -v^{-2} \text{d} v

t(x)=u=0u=x11+v2v2dv=1/xv21+v2dv\displaystyle \therefore t(x) = \int_{u=0}^{u=x} \frac{1}{1+v^{-2}} \cdot -v^{-2} \text{d} v = -\int_\infty^{1/x} \frac{v^{-2}}{1 + v^{-2}} \text{d} v

=1/x11+v2dv\displaystyle = \int_{1/x}^\infty \frac{1}{1+v^2} \text{d} v

t(1/x)+t(x)=x11+v2dv+0x11+u2du=011+u2du=p/2.\displaystyle \therefore t(1/x) + t(x) = \int_{x}^\infty \frac{1}{1+v^2} \text{d} v + \int_0^x \frac{1}{1+u^2} \text{d} u = \int_0^\infty \frac{1}{1+u^2} \text{d} u = p/2.

Choose x = 1 and result follows.

(ii)

y=u1+u2y2(1+u2)=u2u=y1y2\displaystyle y = \frac{u}{\sqrt{1+u^2}} \Rightarrow y^2(1+u^2) = u^2 \Rightarrow u = \frac{y}{\sqrt{1-y^2}}

dudy=(1y2)1/2+y2(1y2)3/2=(1y2+y2)(1y2)3/2=1(1y2)3\displaystyle \frac{\text{d} u}{\text{d} y} = (1-y^2)^{-1/2} + y^2(1-y^2)^{-3/2} = (1-y^2+y^2)(1-y^2)^{-3/2} = \frac{1}{\sqrt{(1-y^2)^3}}

Performing this substitution:

t(x)=u=0u=x11+y21y21(1y2)3dy\displaystyle t(x) = \int_{u=0}^{u=x} \frac{1}{1 + \frac{y^2}{1-y^2}} \cdot \frac{1}{\sqrt{(1-y^2)^3}} \text{d} y

=u=0u=x1y2(1y2)3dy\displaystyle = \int_{u=0}^{u=x} \frac{1-y^2}{\sqrt{(1-y^2)^3}} \text{d} y

=0x/1+x211y2dy=s(x1+x2).\displaystyle = \int_0^{x/\sqrt{1+x^2}} \frac{1}{\sqrt{1-y^2}} \text{d} y = s\left( \frac{x}{\sqrt{1+x^2}} \right) .

Again, choose x = 1 and result follows.

(iii)

z=u+13113u\displaystyle z = \frac{u + \frac{1}{\sqrt{3}}}{1 - \frac{1}{\sqrt{3}} u}

u=z131+13z\displaystyle \Rightarrow u = \frac{z - \frac{1}{\sqrt{3}}}{1 + \frac{1}{\sqrt{3}} z} (detail omitted!)

dudz=(1+13z)(z13)(13)(1+13z)2=4/3(1+13z)2\displaystyle \Rightarrow \frac{\text{d} u}{\text{d} z} = \frac{(1 + \frac{1}{\sqrt{3}} z) - (z - \frac{1}{\sqrt{3}})(\frac{1}{ \sqrt{3}})}{(1 + \frac{1}{\sqrt{3}} z)^2} = \frac{4/3}{{(1 + \frac{1}{\sqrt{3}} z)^2}}

t(x)=u=0u=x11+(z131+13z)24/3(1+13z)2dz\displaystyle t(x) = \int_{u=0}^{u=x} \frac{1}{1 + \left( \frac{z - \frac{1}{\sqrt{3}}}{1 + \frac{1}{\sqrt{3}} z} \right)^2} \cdot \frac{4/3}{{(1 + \frac{1}{\sqrt{3}} z)^2}} \text{d} z

=u=0u=x4/3(1+13z)2+(z13)2dz\displaystyle = \int_{u=0}^{u=x} \frac{4/3}{(1 + \frac{1}{\sqrt{3}} z)^2 + (z - \frac{1}{\sqrt{3}} )^2} \text{d} z

=u=0u=x4/343(1+z2)dz\displaystyle = \int_{u=0}^{u=x} \frac{4/3}{\frac{4}{3} (1 + z^2)} \text{d} z

=1/3α(x)11+z2dz\displaystyle = \int_{1/\sqrt{3}}^{\alpha (x)} \frac{1}{1+z^2} \text{d} z

where

α(x)=x+13113x.\displaystyle \alpha (x) = \frac{x + \frac{1}{\sqrt{3}}}{1 - \frac{1}{\sqrt{3}} x} .

Then

α(13)=3\displaystyle \alpha \left( \frac{1}{\sqrt{3}} \right) = \sqrt{3}

and so

t(13)=1/3311+z2dz.\displaystyle t\left( \frac{1}{\sqrt{3}} \right) = \int_{1/\sqrt{3}}^{\sqrt{3}} \frac{1}{1+z^2} \text{d} z.

3t(13)=01/311+u2du+1/3311+z2dz+311+v2dv\displaystyle 3t\left( \frac{1}{\sqrt{3}} \right) = \int_0^{1/\sqrt{3}} \frac{1}{1+u^2} \text{d} u + \int_{1/\sqrt{3}}^{\sqrt{3}} \frac{1}{1+z^2} \text{d} z + \int_{\sqrt{3}}^\infty \frac{1}{1+v^2} \text{d} v

=011+u2du=12p.\displaystyle = \int_0^\infty \frac{1}{1+u^2} \text{d} u = \frac{1}{2} p.
STEP I Question 3
cos4θsin4θ=(cos2θ+sin2θ)(cos2θsin2θ)=cos2θ cos^4\theta - sin^4\theta = (cos^2\theta + sin^2\theta)(cos^2\theta - sin^2\theta) = cos2\theta

cos4θ+sin4θ=14(cos22θ+2cos2θ+1)+14(cos22θ2cos2θ+1) cos^4\theta + sin^4\theta = \frac{1}{4}(cos^22\theta + 2cos2\theta + 1) + \frac{1}{4}(cos^22\theta - 2cos2\theta +1)

=12cos22θ+12=12(1sin22θ)+12 = \frac{1}{2}cos^22\theta + \frac{1}{2} = \frac{1}{2}(1-sin^22\theta) + \frac{1}{2}

=112sin22θ = 1 - \frac{1}{2}sin^22\theta

Right this stinks of I + J adding and substracting these integrals using the identities. But scrap that theres sin^6x so im going for reduction formula.

Unparseable latex formula:

I_n = \displaystyle \int_0^{\frac{\pi}{2}} sin^n\theta \hspace5 d\theta



Unparseable latex formula:

I_n = \displaystyle \int sin^{n-1}\theta sin \theta \hspace5 d\theta



By parts

u=sinn1θ\displaystyle u = sin^{n-1}\theta

dudx=(n1)sinn2θcosθ\displaystyle \frac{du}{dx} = (n-1)sin^{n-2}\theta cos\theta

dvdx=sinθ\displaystyle \frac{dv}{dx} = sin\theta

v=cosθ\displaystyle v = -cos\theta

Unparseable latex formula:

\displaystyle I_n = [-sin^{n-1}\theta cos\theta]_0^{\frac{\pi}{2}} - \int_0^{\frac{pi}{2}} -(n-1)sin^{n-2}\theta cos^2\theta \hspace5 d\theta



Unparseable latex formula:

\displaystyle = (n-1)\int_0^{\frac{\pi}{2}}sin^{n-2}\theta (1-sin^2\theta) \hspace5 d\theta



Unparseable latex formula:

\displaystyle = (n-1)\int_0^{\frac{\pi}{2}}sin^{n-2}\theta - sin^n\theta \hspace5 d\theta



In=(n1)(In2In)\displaystyle I_n = (n-1)(I_{n-2} - I_n)

In=nIn2nInIn2+In\displaystyle I_n = nI_{n-2} - nI_n - I_{n-2} + I_n

nIn=(n1)In2\displaystyle nI_n = (n-1)I_{n-2}

In=n1nIn2\displaystyle I_n = \frac{n-1}{n} I_{n-2}

Let

Unparseable latex formula:

\displaystyle I_n = \int_0^{\frac{\pi}{2}} cos^n\theta \hspace5 d\theta = \int_0^{\frac{\pi}{2}} cos^{n-1}\theta cos\theta \hspace5 d\theta



u=cosn1θ\displaystyle u = cos^{n-1}\theta

dudx=(n1)cosn2sinθ\displaystyle \frac{du}{dx} = -(n-1)cos^{n-2}sin\theta

dvdx=cosθ\displaystyle \frac{dv}{dx} = cos \theta

v=sinθ\displaystyle v = sin\theta

Unparseable latex formula:

\displaystyle I_n = [cos^{n-1}\theta sin\theta]_0^{\frac{\pi}{2}} - \int_0^{\frac{\pi}{2}} -(n-1)cos^{n-2}sin^2\theta \hspace5 d\theta



Unparseable latex formula:

\displaystyle I_n = (n-1)\int_0^{\frac{\pi}{2}} cos^{n-2}\theta(1-cos^2\theta) \hspace5 d\theta



Unparseable latex formula:

\displaystyle I_n = (n-1)\int_0^{\frac{\pi}{2}} cos^{n-2}\theta - cos^n\theta \hspace5 d\theta



In=(n1)(In2In)\displaystyle I_n = (n-1)(I_{n-2} - I_n)

In=nIn2nInIn2+In\displaystyle I_n = nI_{n-2} - nI_n - I_{n-2} + I_n

nIn=(n1)In2\displaystyle nI_n = (n-1)I_{n-2}

In=(n1)nIn2\displaystyle I_n = \frac{(n-1)}{n} I_{n-2}

Unparseable latex formula:

\displaystyle \int_0^{\frac{\pi}{2}} sin^4\theta \hspace5 d\theta



I4=34I2\displaystyle I_4 = \frac{3}{4}I_2

I2=12I0\displaystyle I_2 = \frac{1}{2}I_0

I0=π2\displaystyle I_0 = \frac{\pi}{2}

I4=34.12.π2\displaystyle I_4 = \frac{3}{4}.\frac{1}{2}.\frac{\pi}{2}

I4=3π16\displaystyle I_4 = \frac{3\pi}{16}

Unparseable latex formula:

\displaystyle \int_0^{\frac{\pi}{2}} cos^4\theta \hspace5 d\theta



I4=34I2\displaystyle I_4 = \frac{3}{4}I_2

I2=12I0\displaystyle I_2 = \frac{1}{2}I_0

I0=π2\displaystyle I_0 = \frac{\pi}{2}

I4=34.12.π2\displaystyle I_4 = \frac{3}{4}.\frac{1}{2}.\frac{\pi}{2}

I4=3π16\displaystyle I_4 = \frac{3\pi}{16}

Unparseable latex formula:

\displaystyle \int_0^{\frac{\pi}{2}} sin^6\theta \hspace5 d\theta



I6=56I4\displaystyle I_6 = \frac{5}{6}I_4

I4=34I2\displaystyle I_4 = \frac{3}{4}I_2

I2=12I0 I_2 = \frac{1}{2}I_0

I0=π2 I_0 = \frac{\pi}{2}

I6=56.34.12.π2 I_6 = \frac{5}{6}.\frac{3}{4}.\frac{1}{2}.\frac{\pi}{2}

I6=5π32 I_6 = \frac{5\pi}{32}


Unparseable latex formula:

\displaystyle \int_0^{\frac{\pi}{2}} cos^6\theta \hspace5 d\theta



I6=56I4\displaystyle I_6 = \frac{5}{6}I_4

I4=34I2\displaystyle I_4 = \frac{3}{4}I_2

I2=12I0 I_2 = \frac{1}{2}I_0

I0=π2 I_0 = \frac{\pi}{2}

I6=56.34.12.π2 I_6 = \frac{5}{6}.\frac{3}{4}.\frac{1}{2}.\frac{\pi}{2}

I6=5π32 I_6 = \frac{5\pi}{32}
I'm also claiming III/8. :wink: Might be my last contribution of the night then. Urgh, this will be messy to latex.

(i) Putting u = x:

0+a(x)+xb(x)=00 + \text{a} (x) + x\text{b} (x) = 0

Putting u = exp(-x):

1a(x)+b(x)=01 - \text{a} (x) + \text{b} (x) = 0

Adding:

1+(x+1)b(x)=0b(x)=1x+11 + (x+1)\text{b} (x) = 0 \Rightarrow \text{b} (x) = \frac{-1}{x+1}

a(x)=xx+1\therefore \text{a} (x) = \frac{x}{x+1}

General solution: u=Ax+Bex.u = Ax + Be^{-x} .

dydx+3y2+x1+xy=13(1+x).\displaystyle \frac{\text{d} y}{\text{d} x} + 3y^2 + \frac{x}{1+x} y = \frac{1}{3(1+x)} .

y=13ududxy2=19u2(dudx)2,dydx=13u2dudx+13ud2udx2\displaystyle y = \frac{1}{3u} \frac{\text{d} u}{\text{d} x} \Rightarrow y^2 = \frac{1}{9u^2} \left(\frac{\text{d} u}{\text{d} x}\right)^2, \quad \frac{\text{d} y}{\text{d} x} = \frac{-1}{3u^2}\frac{\text{d} u}{\text{d} x} + \frac{1}{3u} \frac{\text{d}^2 u}{\text{d} x^2}

Applying substitution,

13u2(dudx)2+13ud2udx2+13u2(dudx)2+x1+x13ududx=13(1+x)\displaystyle \frac{-1}{3u^2}\left(\frac{\text{d} u}{\text{d} x}\right)^2 + \frac{1}{3u} \frac{\text{d}^2 u}{\text{d} x^2} + \frac{1}{3u^2} \left(\frac{\text{d} u}{\text{d} x}\right)^2 + \frac{x}{1+x} \frac{1}{3u} \frac{\text{d} u}{\text{d} x} = \frac{1}{3(1+x)}

d2udx2+x1+xdudx11+xu=0\displaystyle \frac{\text{d}^2 u}{\text{d} x^2} + \frac{x}{1+x} \frac{\text{d} u}{\text{d} x} - \frac{1}{1+x} u = 0

which has general solution u=Ax+Bex,u = Ax + Be^{-x} ,

i.e.

13u=13(Ax+Bex),\displaystyle \frac{1}{3u} = \frac{1}{3(Ax + Be^{-x})} ,

dudx=ABex,\displaystyle \frac{\text{d} u}{\text{d} x} = A - Be^{-x} ,

y=ABex3(Ax+Bex).\displaystyle y = \frac{A - Be^{-x}}{3(Ax + Be^{-x})} .

y(0) = 0:

0=ABA=B\displaystyle 0 = A - B \Rightarrow A = B

y=AAex3(Ax+Aex)=1ex3(x+ex).\displaystyle \therefore y = \frac{A - Ae^{-x}}{3(Ax + Ae^{-x})} = \frac{1 - e^{-x}}{3(x + e^{-x})}.

(ii)

dydx+y2+x1xy=11x.\displaystyle \frac{\text{d} y}{\text{d} x} + y^2 + \frac{x}{1-x} y = \frac{1}{1-x} .

Applying the substitution y=1ududx\displaystyle y = \frac{1}{u} \frac{\text{d} u}{\text{d} x} gives (detail omitted):

d2udx2+x1xdudx11xu=0\displaystyle \frac{\text{d}^2u}{\text{d} x^2} + \frac{x}{1-x} \frac{\text{d} u}{\text{d} x} - \frac{1}{1-x} u = 0

to which "obvious" solutions are u = x, u = exp x, and so the general solution is u=Ax+Bex.u = Ax + Be^x. This gives:

1u=1Ax+Bex,dudx=A+Bex\displaystyle \frac{1}{u} = \frac{1}{Ax + Be^x} ,\quad \frac{\text{d} u}{\text{d} x} = A + Be^x

y=A+BexAx+Bex.\displaystyle \therefore y = \frac{A + Be^x}{Ax + Be^x} .

y(0) = 2:

2=A+BBA=B\displaystyle 2 = \frac{A + B}{B} \Rightarrow A = B

y=A+AexAx+Aex=1+exx+ex.\displaystyle \therefore y = \frac{A + Ae^x}{Ax + Ae^x} = \frac{1 + e^x}{x + e^x} .
Alternative I/3. As inspirato for the beginning.

insparato
STEP I Question 3
cos4θsin4θ=(cos2θ+sin2θ)(cos2θsin2θ)=cos2θ cos^4\theta - sin^4\theta = (cos^2\theta + sin^2\theta)(cos^2\theta - sin^2\theta) = cos2\theta (*)

cos4θ+sin4θ=14(cos22θ+2cos2θ+1)+14(cos22θ2cos2θ+1) cos^4\theta + sin^4\theta = \frac{1}{4}(cos^22\theta + 2cos2\theta + 1) + \frac{1}{4}(cos^22\theta - 2cos2\theta +1)

=12cos22θ+12=12(1sin22θ)+12 = \frac{1}{2}cos^22\theta + \frac{1}{2} = \frac{1}{2}(1-sin^22\theta) + \frac{1}{2}

=112sin22θ = 1 - \frac{1}{2}sin^22\theta (**)


Now, (*) + (**) gives 2cos4θ=cos2θ+112sin22θ2cos^4\theta = cos2\theta + 1 - \frac{1}{2}sin^22\theta so that cos4θ=12(cos2θ+112sin22θ)cos^4\theta = \frac{1}{2}(cos2\theta + 1 - \frac{1}{2}sin^2 2\theta)
And, (*)-(**) gives sin4θ=12(112sin22θcos2θ)sin^4\theta = \frac{1}{2}(1 - \frac{1}{2}sin^2 2\theta - cos2\theta)

So, 0π2cos4θdθ=120π2cos2θ+112sin22θdθ\displaystyle \int_0^{\frac{\pi}{2}} cos^4 \theta \text{d}\theta = \frac{1}{2} \int_0^{\frac{\pi}{2}} cos2\theta + 1 - \frac{1}{2}sin^2 2\theta \text{d}\theta

12sin22θ=14cos4θ14-\frac{1}{2}sin^2 2\theta = \frac{1}{4}cos4 \theta - \frac{1}{4}

So that 120π2cos2θ+14cos4θ+34=12[12sin2θ+34θ+116sin4θ]0π2\displaystyle \frac{1}{2} \int_0^{\frac{\pi}{2}} cos2\theta + \frac{1}{4}cos4\theta + \frac{3}{4} = \frac{1}{2} \left[\frac{1}{2}sin2\theta + \frac{3}{4}\theta + \frac{1}{16}sin4\theta\right]_0^{\frac{\pi}{2}}

=12([3π8][0])=316π= \frac{1}{2}([\frac{3\pi}{8}]-[0]) = \frac{3}{16}\pi

The one with sin4θsin^4 \theta is very nearly the same, just a sign change here and there (skipping the intermediate rearrangements):

0π2sin4θdθ=120π2cos2θ+14cos4θ+34=12[12sin2θ+34θ+116sin4θ]0π2\displaystyle \int_0^{\frac{\pi}{2}} sin^4 \theta \text{d}\theta = \frac{1}{2} \int_0^{\frac{\pi}{2}} -cos2\theta + \frac{1}{4}cos4\theta + \frac{3}{4} = \frac{1}{2} \left[-\frac{1}{2}sin2\theta + \frac{3}{4}\theta + \frac{1}{16}sin4\theta\right]_0^{\frac{\pi}{2}}

=12([3π8][0])=316π = \frac{1}{2}([\frac{3\pi}{8}]-[0]) = \frac{3}{16}\pi

Then a traditional mash through the trig for the 6-th power ones, which I won't type up :p:
Yep i did it that way originally on paper. But i thought im going to have to do reduction formula anyways so might as well follow through. Btw I was going to post that but the Latex was a bitch anyways so i couldnt be bothered lol.
I'm still 4 chapters away from the reduction formula in FP2 ;dry;:frown:
Get reading then :p:. I've posted two examples there :biggrin:.
Yes, sir!
After STEP :ninja:
Reply 17
Step I Q2

ok, so this is my first time EVER using latex :redface: , here goes...




ok, so i cant master latex :redface:, see fatuous philomath's post :smile:
Reply 18
eponymous
Step I Q2

ok, so this is my first time EVER using latex :redface: , here goes...


[br][br]tan(A+B)=12+13116=1[br][br]A+B=arctan(1)=π4[br][br]\tan ( A+B )= \frac{\frac{1}{2}+\frac{1}{3}}{1-\frac{1}{6}}= 1[br][br]\Rightarrow A+B = arc\tan(1) = \frac{\pi}{4}

now
arctan1p+arctan1q=π4\arctan \frac{1}{p} + \arctan\frac{1}{q} = \frac{\pi}{4}

so from the first part;

1p+1q11pq=1\frac{\frac{1}{p}+\frac{1}{q}}{1-\frac{1}{pq}}= 1

rearranging a bit; p+qpq=11pq\frac{p+q}{pq}= 1-\frac{1}{pq}

pqpq1=0[br][br]pqpq1+2=2[br][br](p1)(q1)=2pq-p-q-1=0[br][br]pq-p-q-1+2=2[br][br](p-1)(q-1)=2

now, 2=1×22 = 1\times2 or 1×2-1\times-2

so (p-1) = 1 or 2 and (q-1) = 2 or 1

hence p = 2 or 3 and q = 3 or 2

(p-1) and (q-1) cannot be equal to -1, since this would make p or q equal to zero and p and q are non zero integers.

I think you mean... :smile:
Reply 19
fatuous_philomath
I think you mean... :smile:


thats it!
thank you so much!!
i really can't get latex right :frown:

Quick Reply

Latest

Trending

Trending