Hey there! Sign in to join this conversationNew here? Join for free

C2 maths help Watch

Announcements
    • Thread Starter
    Offline

    8
    ReputationRep:
    Why does (sin 2x) / (cos 2x) = tan 2x . I thought the answer was tan x because the 2s cancel each other out
    Offline

    2
    ReputationRep:
    (Original post by man111111)
    Why does (sin 2x) / (cos 2x) = tan 2x . I thought the answer was tan x because the 2s cancel each other out
    nah, g math don't work like that.

     \sin () is a function.

     \cos() is a function

    You are applying  2x to that function, you can't just cancel the (2x). Imagine the trig functions as vacuum cleaners, once you suck something up with the vacuum cleaner you can't get it back in it's purest form.
    Offline

    18
    ReputationRep:
    if it was 2sin x and 2cos x you could've cancel the 2s out, ah man i do miss a level maths :')
    Offline

    2
    ReputationRep:
    As a more general formula

     \frac{\sin()}{\cos()} = \tan()

    So....

     \frac{\sin(1)}{\cos(1)} = \tan(1)

     \frac{\sin(x)}{\cos(x)} = \tan(x)

     \frac{\sin(2x)}{\cos(2x)} = \tan(2x)

     \frac{\sin(3x)}{\cos(3x)}= \tan(3x)

    In words, Sine of anything, divided by cosine of that same anything equals tangent of that same anything

    Have I left anything out?

    nah that's moist
    • Community Assistant
    • Welcome Squad
    Offline

    19
    ReputationRep:
    (Original post by Apachai Hopachai)
    As a more general formula

     \frac{\sin()}{\cos()} = \tan()

    So....

     \frac{\sin(1)}{\cos(1)} = \tan(1)

     \frac{\sin(x)}{\cos(x)} = \tan(x)

     \frac{\sin(2x)}{\cos(2x)} = \tan(2x)

     \frac{\sin(3x)}{\cos(3x)}= \tan(3x)

    In words, Sine of anything, divided by cosine of that same anything equals tangent of that same anything

    Have I left anything out?

    nah that's moist
    That "anything" cannot equal \frac{\pi}{2}+\pi n for n\in \mathbb{Z} otherwise you get division by 0
    Offline

    2
    ReputationRep:
    (Original post by RDKGames)
    That "anything" cannot equal \frac{\pi}{2}+\pi n for n\in \mathbb{Z} otherwise you get division by 0
    yes
    Offline

    9
    ReputationRep:
    (Original post by RDKGames)
    That "anything" cannot equal \frac{\pi}{2}+\pi n for n\in \mathbb{Z} otherwise you get division by 0
    you had to confuse it..
 
 
 
  • See more of what you like on The Student Room

    You can personalise what you see on TSR. Tell us a little about yourself to get started.

  • Poll
    How are your GCSEs going so far?
    Useful resources

    Make your revision easier

    Maths

    Maths Forum posting guidelines

    Not sure where to post? Read the updated guidelines here

    Equations

    How to use LaTex

    Writing equations the easy way

    Student revising

    Study habits of A* students

    Top tips from students who have already aced their exams

    Study Planner

    Create your own Study Planner

    Never miss a deadline again

    Polling station sign

    Thinking about a maths degree?

    Chat with other maths applicants

    Can you help? Study help unanswered threads

    Groups associated with this forum:

    View associated groups
  • See more of what you like on The Student Room

    You can personalise what you see on TSR. Tell us a little about yourself to get started.

  • The Student Room, Get Revising and Marked by Teachers are trading names of The Student Room Group Ltd.

    Register Number: 04666380 (England and Wales), VAT No. 806 8067 22 Registered Office: International House, Queens Road, Brighton, BN1 3XE

    Quick reply
    Reputation gems: You get these gems as you gain rep from other members for making good contributions and giving helpful advice.